-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
134 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
#pragma autotune BLOCK_SIZE_M {128, 256} default 128 | ||
#pragma autotune BLOCK_SIZE_N {128, 256} default 256 | ||
#pragma autotune BLOCK_SIZE_K {32, 64} default 64 | ||
#pragma autotune GROUP_SIZE_M {8, 12, 16, 20, 24} default 8 | ||
#pragma autotune intrinsic num_warps {4, 8} default 8 | ||
#pragma autotune intrinsic num_stages {3, 4, 5} default 3 | ||
|
||
#pragma argument 0 ptr cuMalloc(8192 * 8192 * 2) | ||
#pragma argument 1 ptr cuMalloc(8192 * 8192 * 2) | ||
#pragma argument 2 ptr cuMalloc(8192 * 8192 * 2) | ||
|
||
#pragma argument 3 i32 8192 | ||
#pragma argument 4 i32 8192 | ||
#pragma argument 5 i32 8192 | ||
|
||
#pragma argument 6 i32 8192 | ||
#pragma argument 7 i32 8192 | ||
#pragma argument 8 i32 8192 | ||
|
||
#pragma grid x ((8192 / ${BLOCK_SIZE_M}) * (8192 / ${BLOCK_SIZE_N})) | ||
|
||
#pragma launch matmul_kernel | ||
|
||
module { | ||
tt.func public @matmul_kernel(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32}, | ||
%arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32}, | ||
%arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32}, | ||
%arg3: i32 {tt.divisibility = 16 : i32}, | ||
%arg4: i32 {tt.divisibility = 16 : i32}, | ||
%arg5: i32 {tt.divisibility = 16 : i32}, | ||
%arg6: i32 {tt.divisibility = 16 : i32}, | ||
%arg7: i32 {tt.divisibility = 16 : i32}, | ||
%arg8: i32 {tt.divisibility = 16 : i32}) attributes {noinline = false} { | ||
%c31_i32 = arith.constant 31 : i32 | ||
%cst = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16> | ||
%c255_i32 = arith.constant ${${BLOCK_SIZE_N} - 1} : i32 | ||
%c127_i32 = arith.constant ${${BLOCK_SIZE_M} - 1} : i32 | ||
%cst_0 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xf16> | ||
%cst_1 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xf16> | ||
%c1_i32 = arith.constant 1 : i32 | ||
%c0_i32 = arith.constant 0 : i32 | ||
%cst_2 = arith.constant dense<${BLOCK_SIZE_K}> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%c32_i32 = arith.constant ${BLOCK_SIZE_K} : i32 | ||
%c256_i32 = arith.constant ${BLOCK_SIZE_N} : i32 | ||
%c128_i32 = arith.constant ${BLOCK_SIZE_M} : i32 | ||
%c8_i32 = arith.constant ${GROUP_SIZE_M} : i32 | ||
%0 = tt.get_program_id x : i32 | ||
%1 = arith.addi %arg3, %c127_i32 : i32 | ||
%2 = arith.divsi %1, %c128_i32 : i32 | ||
%3 = arith.addi %arg4, %c255_i32 : i32 | ||
%4 = arith.divsi %3, %c256_i32 : i32 | ||
%5 = arith.muli %4, %c8_i32 : i32 | ||
%6 = arith.divsi %0, %5 : i32 | ||
%7 = arith.muli %6, %c8_i32 : i32 | ||
%8 = arith.subi %2, %7 : i32 | ||
%9 = arith.minsi %8, %c8_i32 : i32 | ||
%10 = arith.remsi %0, %9 : i32 | ||
%11 = arith.addi %7, %10 : i32 | ||
%12 = arith.remsi %0, %5 : i32 | ||
%13 = arith.divsi %12, %9 : i32 | ||
%14 = arith.muli %11, %c128_i32 : i32 | ||
%15 = tt.make_range {end = ${BLOCK_SIZE_M} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_M}xi32> | ||
%16 = tt.splat %14 : i32 -> tensor<${BLOCK_SIZE_M}xi32> | ||
%17 = arith.addi %16, %15 : tensor<${BLOCK_SIZE_M}xi32> | ||
%18 = tt.splat %arg3 : i32 -> tensor<${BLOCK_SIZE_M}xi32> | ||
%19 = arith.remsi %17, %18 : tensor<${BLOCK_SIZE_M}xi32> | ||
%20 = arith.muli %13, %c256_i32 : i32 | ||
%21 = tt.make_range {end = ${BLOCK_SIZE_N} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> | ||
%22 = tt.splat %20 : i32 -> tensor<${BLOCK_SIZE_N}xi32> | ||
%23 = arith.addi %22, %21 : tensor<${BLOCK_SIZE_N}xi32> | ||
%24 = tt.splat %arg4 : i32 -> tensor<${BLOCK_SIZE_N}xi32> | ||
%25 = arith.remsi %23, %24 : tensor<${BLOCK_SIZE_N}xi32> | ||
%26 = tt.make_range {end = ${BLOCK_SIZE_K} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_K}xi32> | ||
%27 = tt.expand_dims %19 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xi32> -> tensor<${BLOCK_SIZE_M}x1xi32> | ||
%28 = tt.splat %arg6 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32> | ||
%29 = arith.muli %27, %28 : tensor<${BLOCK_SIZE_M}x1xi32> | ||
%30 = tt.expand_dims %26 {axis = 0 : i32} : tensor<${BLOCK_SIZE_K}xi32> -> tensor<1x${BLOCK_SIZE_K}xi32> | ||
%31 = tt.broadcast %29 : tensor<${BLOCK_SIZE_M}x1xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%32 = tt.broadcast %30 : tensor<1x${BLOCK_SIZE_K}xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%33 = arith.addi %31, %32 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%34 = tt.splat %arg0 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>> | ||
%35 = tt.addptr %34, %33 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%36 = tt.expand_dims %26 {axis = 1 : i32} : tensor<${BLOCK_SIZE_K}xi32> -> tensor<${BLOCK_SIZE_K}x1xi32> | ||
%37 = tt.splat %arg7 : i32 -> tensor<${BLOCK_SIZE_K}x1xi32> | ||
%38 = arith.muli %36, %37 : tensor<${BLOCK_SIZE_K}x1xi32> | ||
%39 = tt.expand_dims %25 {axis = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<1x${BLOCK_SIZE_N}xi32> | ||
%40 = tt.broadcast %38 : tensor<${BLOCK_SIZE_K}x1xi32> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
%41 = tt.broadcast %39 : tensor<1x${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
%42 = arith.addi %40, %41 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
%43 = tt.splat %arg1 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>> | ||
%44 = tt.addptr %43, %42 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
%45 = arith.addi %arg5, %c31_i32 : i32 | ||
%46 = arith.divsi %45, %c32_i32 : i32 | ||
%47 = arith.muli %arg7, %c32_i32 : i32 | ||
%48 = tt.splat %47 : i32 -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
%49:3 = scf.for %arg9 = %c0_i32 to %46 step %c1_i32 iter_args(%arg10 = %cst, %arg11 = %35, %arg12 = %44) -> (tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>) : i32 { | ||
%66 = arith.muli %arg9, %c32_i32 : i32 | ||
%67 = arith.subi %arg5, %66 : i32 | ||
%68 = tt.splat %67 : i32 -> tensor<1x${BLOCK_SIZE_K}xi32> | ||
%69 = arith.cmpi slt, %30, %68 : tensor<1x${BLOCK_SIZE_K}xi32> | ||
%70 = tt.broadcast %69 : tensor<1x${BLOCK_SIZE_K}xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi1> | ||
%71 = tt.load %arg11, %70, %cst_1 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>> | ||
%72 = tt.splat %67 : i32 -> tensor<${BLOCK_SIZE_K}x1xi32> | ||
%73 = arith.cmpi slt, %36, %72 : tensor<${BLOCK_SIZE_K}x1xi32> | ||
%74 = tt.broadcast %73 : tensor<${BLOCK_SIZE_K}x1xi1> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi1> | ||
%75 = tt.load %arg12, %74, %cst_0 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>> | ||
%76 = tt.dot %71, %75, %arg10, inputPrecision = tf32 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xf16> * tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xf16> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16> | ||
%77 = tt.addptr %arg11, %cst_2 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32> | ||
%78 = tt.addptr %arg12, %48 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32> | ||
scf.yield %76, %77, %78 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>> | ||
} | ||
%50 = tt.expand_dims %17 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xi32> -> tensor<${BLOCK_SIZE_M}x1xi32> | ||
%51 = tt.splat %arg8 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32> | ||
%52 = arith.muli %51, %50 : tensor<${BLOCK_SIZE_M}x1xi32> | ||
%53 = tt.splat %arg2 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>> | ||
%54 = tt.addptr %53, %52 : tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x1xi32> | ||
%55 = tt.expand_dims %23 {axis = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<1x${BLOCK_SIZE_N}xi32> | ||
%56 = tt.broadcast %54 : tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>> | ||
%57 = tt.broadcast %55 : tensor<1x${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32> | ||
%58 = tt.addptr %56, %57 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32> | ||
%59 = tt.splat %arg3 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32> | ||
%60 = arith.cmpi slt, %50, %59 : tensor<${BLOCK_SIZE_M}x1xi32> | ||
%61 = tt.splat %arg4 : i32 -> tensor<1x${BLOCK_SIZE_N}xi32> | ||
%62 = arith.cmpi slt, %55, %61 : tensor<1x${BLOCK_SIZE_N}xi32> | ||
%63 = tt.broadcast %60 : tensor<${BLOCK_SIZE_M}x1xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1> | ||
%64 = tt.broadcast %62 : tensor<1x${BLOCK_SIZE_N}xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1> | ||
%65 = arith.andi %63, %64 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1> | ||
tt.store %58, %49#0, %65 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>> | ||
tt.return | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters