Skip to content

Commit

Permalink
Merge branch 'unitary-hack-ibmq-auth' into ibmq-auth
Browse files Browse the repository at this point in the history
  • Loading branch information
01110011011101010110010001101111 authored Jun 12, 2024
2 parents c483dc3 + 60ace1e commit f12acb8
Show file tree
Hide file tree
Showing 76 changed files with 4,506 additions and 935 deletions.
8 changes: 4 additions & 4 deletions .github/workflows/functional_tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
name: Python package

on:
push:
push:
pull_request:

jobs:
Expand All @@ -17,16 +17,16 @@ jobs:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]

steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
python -m pip install flake8 pytest qiskit-aer qiskit_ibm_runtime
python -m pip install flake8 pytest
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/lint.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,9 @@ jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Setup Python 3.8
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Update pip and install lint utilities
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/pull_request.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@ jobs:
pre-commit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: pre-commit/[email protected]
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ Simulate quantum computations on classical hardware using PyTorch. It supports s
Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, quantum neural networks.
#### Differences from Qiskit/Pennylane

Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tersorized processing.
Dynamic computation graph, automatic gradient computation, fast GPU support, batch model tensorized processing.

## News
- v0.1.8 Available!
Expand Down
Empty file.
42 changes: 42 additions & 0 deletions examples/QCBM/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Quantum Circuit Born Machine
(Implementation by: [Gopal Ramesh Dahale](https://github.com/Gopal-Dahale))

Quantum Circuit Born Machine (QCBM) [1] is a generative modeling algorithm which uses Born rule from quantum mechanics to sample from a quantum state $|\psi \rangle$ learned by training an ansatz $U(\theta)$ [1][2]. In this tutorial we show how `torchquantum` can be used to model a Gaussian mixture with QCBM.

## Setup

Below is the usage of `qcbm_gaussian_mixture.py` which can be obtained by running `python qcbm_gaussian_mixture.py -h`.

```
usage: qcbm_gaussian_mixture.py [-h] [--n_wires N_WIRES] [--epochs EPOCHS] [--n_blocks N_BLOCKS] [--n_layers_per_block N_LAYERS_PER_BLOCK] [--plot] [--optimizer OPTIMIZER] [--lr LR]
options:
-h, --help show this help message and exit
--n_wires N_WIRES Number of wires used in the circuit
--epochs EPOCHS Number of training epochs
--n_blocks N_BLOCKS Number of blocks in ansatz
--n_layers_per_block N_LAYERS_PER_BLOCK
Number of layers per block in ansatz
--plot Visualize the predicted probability distribution
--optimizer OPTIMIZER
optimizer class from torch.optim
--lr LR
```

For example:

```
python qcbm_gaussian_mixture.py --plot --epochs 100 --optimizer RMSprop --lr 0.01 --n_blocks 6 --n_layers_per_block 2 --n_wires 6
```

Using the command above gives an output similar to the plot below.

<p align="center">
<img src ='./assets/sample_output.png' width-500 alt='sample output of QCBM'>
</p>


## References

1. Liu, Jin-Guo, and Lei Wang. “Differentiable learning of quantum circuit born machines.” Physical Review A 98.6 (2018): 062324.
2. Gili, Kaitlin, et al. "Do quantum circuit born machines generalize?." Quantum Science and Technology 8.3 (2023): 035021.
Binary file added examples/QCBM/assets/sample_output.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
255 changes: 255 additions & 0 deletions examples/QCBM/qcbm_gaussian_mixture.ipynb

Large diffs are not rendered by default.

129 changes: 129 additions & 0 deletions examples/QCBM/qcbm_gaussian_mixture.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchquantum.algorithm import QCBM, MMDLoss
import torchquantum as tq
import argparse
import os
from pprint import pprint


# Reproducibility
def set_seed(seed: int = 42) -> None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set a fixed value for the hash seed
os.environ["PYTHONHASHSEED"] = str(seed)
print(f"Random seed set as {seed}")


def _setup_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--n_wires", type=int, default=6, help="Number of wires used in the circuit"
)
parser.add_argument(
"--epochs", type=int, default=10, help="Number of training epochs"
)
parser.add_argument(
"--n_blocks", type=int, default=6, help="Number of blocks in ansatz"
)
parser.add_argument(
"--n_layers_per_block",
type=int,
default=1,
help="Number of layers per block in ansatz",
)
parser.add_argument(
"--plot",
action="store_true",
help="Visualize the predicted probability distribution",
)
parser.add_argument(
"--optimizer", type=str, default="Adam", help="optimizer class from torch.optim"
)
parser.add_argument("--lr", type=float, default=1e-2)
return parser


# Function to create a gaussian mixture
def gaussian_mixture_pdf(x, mus, sigmas):
mus, sigmas = np.array(mus), np.array(sigmas)
vars = sigmas**2
values = [
(1 / np.sqrt(2 * np.pi * v)) * np.exp(-((x - m) ** 2) / (2 * v))
for m, v in zip(mus, vars)
]
values = np.sum([val / sum(val) for val in values], axis=0)
return values / np.sum(values)


def main():
set_seed()
parser = _setup_parser()
args = parser.parse_args()

print("Configuration:")
pprint(vars(args))

# Create a gaussian mixture
n_wires = args.n_wires
assert n_wires >= 1, "Number of wires must be at least 1"

x_max = 2**n_wires
x_input = np.arange(x_max)
mus = [(2 / 8) * x_max, (5 / 8) * x_max]
sigmas = [x_max / 10] * 2
data = gaussian_mixture_pdf(x_input, mus, sigmas)

# This is the target distribution that the QCBM will learn
target_probs = torch.tensor(data, dtype=torch.float32)

# Ansatz
layers = tq.RXYZCXLayer0(
{
"n_blocks": args.n_blocks,
"n_wires": n_wires,
"n_layers_per_block": args.n_layers_per_block,
}
)

qcbm = QCBM(n_wires, layers)

# To train QCBMs, we use MMDLoss with radial basis function kernel.
bandwidth = torch.tensor([0.25, 60])
space = torch.arange(2**n_wires)
mmd = MMDLoss(bandwidth, space)

# Optimization
optimizer_class = getattr(torch.optim, args.optimizer)
optimizer = optimizer_class(qcbm.parameters(), lr=args.lr)

for i in range(args.epochs):
optimizer.zero_grad(set_to_none=True)
pred_probs = qcbm()
loss = mmd(pred_probs, target_probs)
loss.backward()
optimizer.step()
print(i, loss.item())

# Visualize the results
if args.plot:
with torch.no_grad():
pred_probs = qcbm()

plt.plot(x_input, target_probs, linestyle="-.", label=r"$\pi(x)$")
plt.bar(x_input, pred_probs, color="green", alpha=0.5, label="samples")
plt.xlabel("Samples")
plt.ylabel("Prob. Distribution")

plt.legend()
plt.show()


if __name__ == "__main__":
main()
13 changes: 13 additions & 0 deletions examples/amplitude_encoding_mnist/mnist_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,10 +100,23 @@ def forward(self, x, use_qiskit=False):
bsz = x.shape[0]
x = F.avg_pool2d(x, 6).view(bsz, 16)


print("Shape 1:")
print(self.q_device.states.shape)
self.encoder(self.q_device, x)
self.q_layer(self.q_device)



print("X shape before measurement")
print(x.shape)

x = self.measure(self.q_device)


print("X shape after measurement")
print(x.shape)

x = x.reshape(bsz, 2, 2).sum(-1).squeeze()
x = F.log_softmax(x, dim=1)

Expand Down
Loading

0 comments on commit f12acb8

Please sign in to comment.