Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support qiskit2tq to parse Qiskit’s ParameterExpression #275

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions test/plugin/test_qiskit2tq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
"""
MIT License

Copyright (c) 2020-present TorchQuantum Authors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import random

import numpy as np
import pytest
import torch
import torch.optim as optim
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter, ParameterVector
from torch.optim.lr_scheduler import CosineAnnealingLR

import torchquantum as tq
from torchquantum.plugin import qiskit2tq

seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)


class TQModel(tq.QuantumModule):
def __init__(self, init_params=None):
super().__init__()
self.n_wires = 2
self.rx = tq.RX(has_params=True, trainable=True, init_params=[init_params[0]])
self.u3_0 = tq.U3(has_params=True, trainable=True, init_params=init_params[1:4])
self.u3_1 = tq.U3(
has_params=True,
trainable=True,
init_params=torch.tensor(
[
init_params[4] + init_params[2],
init_params[5] * init_params[3],
init_params[6] * init_params[1],
]
),
)
self.cu3_0 = tq.CU3(
has_params=True,
trainable=True,
init_params=torch.tensor(
[
torch.sin(init_params[7]),
torch.abs(torch.sin(init_params[8])),
torch.abs(torch.sin(init_params[9]))
* torch.exp(init_params[2] + init_params[3]),
]
),
)

def forward(self, q_device: tq.QuantumDevice):
q_device.reset_states(1)
self.rx(q_device, wires=0)
self.u3_0(q_device, wires=0)
self.u3_1(q_device, wires=1)
self.cu3_0(q_device, wires=[0, 1])


def get_qiskit_ansatz():
ansatz = QuantumCircuit(2)
ansatz_param = Parameter("Θ") # parameter
ansatz.rx(ansatz_param, 0)
ansatz_param_vector = ParameterVector("φ", 9) # parameter vector
ansatz.u(ansatz_param_vector[0], ansatz_param_vector[1], ansatz_param_vector[2], 0)
ansatz.u(
ansatz_param_vector[3] + ansatz_param_vector[1], # parameter expression
ansatz_param_vector[4] * ansatz_param_vector[2],
ansatz_param_vector[5] / ansatz_param_vector[0],
1,
)
ansatz.cu(
np.sin(ansatz_param_vector[6]), # numpy functions
np.abs(np.sin(ansatz_param_vector[7])), # nested numpy functions
# complex expression
np.abs(np.sin(ansatz_param_vector[8]))
* np.exp(ansatz_param_vector[1] + ansatz_param_vector[2]),
0.0,
0,
1,
)
return ansatz


def train_step(target_state, device, model, optimizer):
model(device)
result_state = device.get_states_1d()[0]

# compute the state infidelity
loss = 1 - torch.dot(result_state, target_state).abs() ** 2

optimizer.zero_grad()
loss.backward()
optimizer.step()

infidelity = loss.item()
target_state_vector = target_state.detach().cpu().numpy()
result_state_vector = result_state.detach().cpu().numpy()
print(
f"infidelity (loss): {infidelity}, \n target state : "
f"{target_state_vector}, \n "
f"result state : {result_state_vector}\n"
)
return infidelity, target_state_vector, result_state_vector


def train(init_params, backend):
device = torch.device("cpu")

if backend == "qiskit":
ansatz = get_qiskit_ansatz()
model = qiskit2tq(ansatz, initial_parameters=init_params).to(device)
elif backend == "torchquantum":
model = TQModel(init_params).to(device)

print(f"{backend} model:", model)

n_epochs = 10
optimizer = optim.Adam(model.parameters(), lr=1e-2, weight_decay=0)
scheduler = CosineAnnealingLR(optimizer, T_max=n_epochs)

q_device = tq.QuantumDevice(n_wires=2)
target_state = torch.tensor([0, 1, 0, 0], dtype=torch.complex64)

result_list = []
for epoch in range(1, n_epochs + 1):
print(f"Epoch {epoch}, LR: {optimizer.param_groups[0]['lr']}")
result_list.append(train_step(target_state, q_device, model, optimizer))
scheduler.step()

return result_list


@pytest.mark.parametrize(
"init_params",
[
torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi),
torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi),
torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi),
],
)
def test_qiskit2tq(init_params):
qiskit_result = train(init_params, "qiskit")
tq_result = train(init_params, "torchquantum")
for qi_tensor, tq_tensor in zip(qiskit_result, tq_result):
torch.testing.assert_close(qi_tensor[0], tq_tensor[0])
torch.testing.assert_close(qi_tensor[1], tq_tensor[1])
torch.testing.assert_close(qi_tensor[2], tq_tensor[2])


if __name__ == "__main__":
test_qiskit2tq(torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi))
14 changes: 7 additions & 7 deletions torchquantum/layer/layers/module_from_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,16 @@
SOFTWARE.
"""

from typing import Iterable

import numpy as np
import torch
import torch.nn as nn
from torchpack.utils.logging import logger

import torchquantum as tq
import torchquantum.functional as tqf
import numpy as np


from typing import Iterable
from torchquantum.plugin.qiskit import QISKIT_INCOMPATIBLE_FUNC_NAMES
from torchpack.utils.logging import logger

__all__ = [
"QuantumModuleFromOps",
Expand Down Expand Up @@ -61,6 +61,6 @@ def forward(self, q_device: tq.QuantumDevice):
None

"""
self.q_device = q_device
q_device.reset_states(1)
for op in self.ops:
op(q_device)
op(q_device, wires=op.wires)
75 changes: 67 additions & 8 deletions torchquantum/plugin/qiskit/qiskit_plugin.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,15 +21,20 @@
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from __future__ import annotations

from typing import Iterable
from typing import Iterable, Optional

import numpy as np
import qiskit
import qiskit.circuit.library.standard_gates as qiskit_gate
import symengine
import sympy
import torch
from qiskit import ClassicalRegister, QuantumCircuit, transpile
from qiskit.circuit import Parameter
from qiskit.circuit import CircuitInstruction, Parameter
from qiskit.circuit.parameter import ParameterExpression
from qiskit.circuit.parametervector import ParameterVectorElement
from qiskit_aer import AerSimulator
from torchpack.utils.logging import logger

Expand Down Expand Up @@ -691,7 +696,7 @@ def op_history2qiskit_expand_params(n_wires, op_history, bsz):

# construct a tq QuantumModule object according to the qiskit QuantumCircuit
# object
def qiskit2tq_Operator(circ: QuantumCircuit):
def qiskit2tq_Operator(circ: QuantumCircuit, initial_parameters=None):
if getattr(circ, "_layout", None) is not None:
try:
p2v_orig = circ._layout.final_layout.get_physical_bits().copy()
Expand All @@ -711,14 +716,23 @@ def qiskit2tq_Operator(circ: QuantumCircuit):
for p in range(circ.num_qubits):
p2v[p] = p

if initial_parameters is None:
initial_parameters = torch.nn.init.uniform_(
torch.ones(len(circ.parameters)), -np.pi, np.pi
)

param_to_index = {}
for i, param in enumerate(circ.parameters):
param_to_index[param] = i

ops = []
for gate in circ.data:
op_name = gate[0].name
wires = [circ.find_bit(qb).index for qb in gate.qubits]
wires = [p2v[wire] for wire in wires]
# sometimes the gate.params is ParameterExpression class
init_params = (
list(map(float, gate[0].params)) if len(gate[0].params) > 0 else None

init_params = qiskit2tq_translate_qiskit_params(
gate, initial_parameters, param_to_index
)

if op_name in [
Expand Down Expand Up @@ -780,8 +794,53 @@ def qiskit2tq_Operator(circ: QuantumCircuit):
return ops


def qiskit2tq(circ: QuantumCircuit):
ops = qiskit2tq_Operator(circ)
def qiskit2tq_translate_qiskit_params(
circuit_instruction: CircuitInstruction, initial_parameters, param_to_index
):
parameters = []
for p in circuit_instruction.operation.params:
if isinstance(p, Parameter) or isinstance(p, ParameterVectorElement):
parameters.append(initial_parameters[param_to_index[p]])
elif isinstance(p, ParameterExpression):
if len(p.parameters) == 0:
parameters.append(float(p))
continue

expr = p.sympify().simplify()
if isinstance(expr, symengine.Expr): # qiskit uses symengine if available
expr = expr._sympy_() # sympy.Expr

for free_symbol in expr.free_symbols:
# replace names: theta[0] -> theta_0
# ParameterVector creates symbols with brackets like theta[0]
# but sympy.lambdify does not allow brackets in symbol names
free_symbol.name = free_symbol.name.replace("[", "_").replace("]", "")

parameter_list = list(p.parameters)
sympy_symbols = [param._symbol_expr for param in parameter_list]
# replace names again: theta[0] -> theta_0
sympy_symbols = [
sympy.Symbol(str(symbol).replace("[", "_").replace("]", ""))
for symbol in sympy_symbols
]
lam_f = sympy.lambdify(sympy_symbols, expr, modules="math")
parameters.append(
lam_f(
*[
initial_parameters[param_to_index[param]]
for param in parameter_list
]
)
)
else: # non-parameterized gate
parameters.append(p)
return parameters


def qiskit2tq(
circ: QuantumCircuit, initial_parameters: Optional[list[torch.nn.Parameter]] = None
):
ops = qiskit2tq_Operator(circ, initial_parameters)
return tq.QuantumModuleFromOps(ops)


Expand Down
Loading