generated from mlcommons/mlperf_inference_submissions
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Results from GH action on NVIDIA_RTX4090x2
- Loading branch information
1 parent
3912fed
commit 13a16ab
Showing
81 changed files
with
43,556 additions
and
0 deletions.
There are no files selected for viewing
135 changes: 135 additions & 0 deletions
135
...a_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). | ||
|
||
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* | ||
|
||
## Host platform | ||
|
||
* OS version: Linux-6.8.0-49-generic-x86_64-with-glibc2.29 | ||
* CPU version: x86_64 | ||
* Python version: 3.8.10 (default, Nov 7 2024, 13:10:47) | ||
[GCC 9.4.0] | ||
* MLCommons CM version: 3.5.2 | ||
|
||
## CM Run Command | ||
|
||
See [CM installation guide](https://docs.mlcommons.org/inference/install/). | ||
|
||
```bash | ||
pip install -U cmind | ||
|
||
cm rm cache -f | ||
|
||
cm pull repo mlcommons@mlperf-automations --checkout=225220c7d9bb7e66e5b9a1e1ebfc3e0180fbd094 | ||
|
||
cm run script \ | ||
--tags=app,mlperf,inference,generic,_nvidia,_retinanet,_tensorrt,_cuda,_valid,_r4.1-dev_default,_multistream \ | ||
--quiet=true \ | ||
--env.CM_QUIET=yes \ | ||
--env.CM_MLPERF_IMPLEMENTATION=nvidia \ | ||
--env.CM_MLPERF_MODEL=retinanet \ | ||
--env.CM_MLPERF_RUN_STYLE=valid \ | ||
--env.CM_MLPERF_SKIP_SUBMISSION_GENERATION=False \ | ||
--env.CM_DOCKER_PRIVILEGED_MODE=True \ | ||
--env.CM_MLPERF_BACKEND=tensorrt \ | ||
--env.CM_MLPERF_SUBMISSION_SYSTEM_TYPE=datacenter,edge \ | ||
--env.CM_MLPERF_CLEAN_ALL=True \ | ||
--env.CM_MLPERF_DEVICE=cuda \ | ||
--env.CM_MLPERF_SUBMISSION_DIVISION=closed \ | ||
--env.CM_MLPERF_USE_DOCKER=True \ | ||
--env.CM_NVIDIA_GPU_NAME=rtx_4090 \ | ||
--env.CM_HW_NAME=RTX4090x2 \ | ||
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=yes \ | ||
--env.CM_MLPERF_INFERENCE_PULL_CODE_CHANGES=yes \ | ||
--env.CM_MLPERF_INFERENCE_PULL_SRC_CHANGES=yes \ | ||
--env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \ | ||
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \ | ||
--env.CM_MLPERF_SUBMITTER=MLCommons \ | ||
--env.CM_USE_DATASET_FROM_HOST=yes \ | ||
--env.CM_USE_MODEL_FROM_HOST=yes \ | ||
--env.CM_MLPERF_LOADGEN_ALL_SCENARIOS=yes \ | ||
--env.CM_MLPERF_LOADGEN_COMPLIANCE=yes \ | ||
--env.CM_MLPERF_SUBMISSION_RUN=yes \ | ||
--env.CM_RUN_MLPERF_ACCURACY=on \ | ||
--env.CM_RUN_SUBMISSION_CHECKER=yes \ | ||
--env.CM_TAR_SUBMISSION_DIR=yes \ | ||
--env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=full \ | ||
--env.CM_MLPERF_INFERENCE_VERSION=5.0-dev \ | ||
--env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ | ||
--env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ | ||
--env.CM_MLPERF_INFERENCE_SOURCE_VERSION=5.0.4 \ | ||
--env.CM_MLPERF_LAST_RELEASE=v5.0 \ | ||
--env.CM_TMP_PIP_VERSION_STRING= \ | ||
--env.CM_MODEL=retinanet \ | ||
--env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ | ||
--env.CM_RERUN=yes \ | ||
--env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ | ||
--env.CM_MLPERF_LOADGEN_MODE=performance \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIO=MultiStream \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIOS,=SingleStream,Offline,MultiStream,Server \ | ||
--env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ | ||
--env.CM_OUTPUT_FOLDER_NAME=valid_results \ | ||
--env.CM_DOCKER_REUSE_EXISTING_CONTAINER=yes \ | ||
--env.CM_DOCKER_DETACHED_MODE=yes \ | ||
--env.CM_MLPERF_INFERENCE_RESULTS_DIR_=/home/arjun/gh_action_results/valid_results \ | ||
--env.CM_DOCKER_CONTAINER_ID=e891b1c381b6 \ | ||
--env.CM_MLPERF_LOADGEN_COMPLIANCE_TEST=TEST01 \ | ||
--add_deps_recursive.compiler.tags=gcc \ | ||
--add_deps_recursive.coco2014-original.tags=_full \ | ||
--add_deps_recursive.coco2014-preprocessed.tags=_full \ | ||
--add_deps_recursive.imagenet-original.tags=_full \ | ||
--add_deps_recursive.imagenet-preprocessed.tags=_full \ | ||
--add_deps_recursive.openimages-original.tags=_full \ | ||
--add_deps_recursive.openimages-preprocessed.tags=_full \ | ||
--add_deps_recursive.openorca-original.tags=_full \ | ||
--add_deps_recursive.openorca-preprocessed.tags=_full \ | ||
--add_deps_recursive.coco2014-dataset.tags=_full \ | ||
--add_deps_recursive.igbh-dataset.tags=_full \ | ||
--add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ | ||
--adr.compiler.tags=gcc \ | ||
--adr.coco2014-original.tags=_full \ | ||
--adr.coco2014-preprocessed.tags=_full \ | ||
--adr.imagenet-original.tags=_full \ | ||
--adr.imagenet-preprocessed.tags=_full \ | ||
--adr.openimages-original.tags=_full \ | ||
--adr.openimages-preprocessed.tags=_full \ | ||
--adr.openorca-original.tags=_full \ | ||
--adr.openorca-preprocessed.tags=_full \ | ||
--adr.coco2014-dataset.tags=_full \ | ||
--adr.igbh-dataset.tags=_full \ | ||
--adr.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ | ||
--adr.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ | ||
--adr.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ | ||
--v=False \ | ||
--print_env=False \ | ||
--print_deps=False \ | ||
--dump_version_info=True \ | ||
--env.CM_DATASET_OPENIMAGES_PATH=/home/cmuser/CM/repos/local/cache/cae305b311f24865/install/validation/data \ | ||
--env.CM_OPENIMAGES_CALIBRATION_DATASET_PATH=/home/cmuser/CM/repos/local/cache/f5639d7dd9ba459b/install/calibration/data \ | ||
--env.CM_DATASET_OPENIMAGES_ANNOTATIONS_DIR_PATH=/home/cmuser/CM/repos/local/cache/e44ef68a8a294e31 \ | ||
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \ | ||
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \ | ||
--env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/4db00c74da1e44c8 | ||
``` | ||
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), | ||
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:* | ||
|
||
```bash | ||
cm rm repo mlcommons@mlperf-automations | ||
cm pull repo mlcommons@mlperf-automations | ||
cm rm cache -f | ||
|
||
``` | ||
|
||
## Results | ||
|
||
Platform: RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config | ||
|
||
Model Precision: int8 | ||
|
||
### Accuracy Results | ||
`mAP`: `37.356`, Required accuracy for closed division `>= 37.1745` | ||
|
||
### Performance Results | ||
`Samples per query`: `5654438.0` |
7 changes: 7 additions & 0 deletions
7
...retinanet/multistream/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
{ | ||
"starting_weights_filename": "https://zenodo.org/record/6617981/files/resnext50_32x4d_fpn.pth", | ||
"retraining": "no", | ||
"input_data_types": "int8", | ||
"weight_data_types": "int8", | ||
"weight_transformations": "quantization, affine fusion" | ||
} |
120 changes: 120 additions & 0 deletions
120
..._original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy_console.out
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
[2024-12-23 02:36:38,287 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x2 | ||
[2024-12-23 02:36:38,369 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so'] | ||
[2024-12-23 02:36:38,369 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x2_TRT/retinanet/MultiStream | ||
[2024-12-23 02:36:38,369 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/c44de86dadc4420199ad25d6fa563275.conf" --gpu_engines="./build/engines/RTX4090x2/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms | ||
[2024-12-23 02:36:38,369 __init__.py:53 INFO] Overriding Environment | ||
benchmark : Benchmark.Retinanet | ||
buffer_manager_thread_count : 0 | ||
data_dir : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/data | ||
disable_beta1_smallk : True | ||
gpu_batch_size : 2 | ||
gpu_copy_streams : 1 | ||
gpu_inference_streams : 1 | ||
input_dtype : int8 | ||
input_format : linear | ||
log_dir : /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/logs/2024.12.23-02.36.37 | ||
map_path : data_maps/open-images-v6-mlperf/val_map.txt | ||
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf | ||
multi_stream_expected_latency_ns : 0 | ||
multi_stream_samples_per_query : 8 | ||
multi_stream_target_latency_percentile : 99 | ||
precision : int8 | ||
preprocessed_data_dir : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/preprocessed_data | ||
scenario : Scenario.MultiStream | ||
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='Intel(R) Xeon(R) w7-2495X', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=24, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=197.334532, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=197334532000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1, GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=500.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=NUMAConfiguration(numa_nodes={}, num_numa_nodes=1), system_id='RTX4090x2') | ||
tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear | ||
test_mode : AccuracyOnly | ||
use_deque_limit : True | ||
use_graphs : True | ||
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/c44de86dadc4420199ad25d6fa563275.conf | ||
system_id : RTX4090x2 | ||
config_name : RTX4090x2_retinanet_MultiStream | ||
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP) | ||
optimization_level : plugin-enabled | ||
num_profiles : 1 | ||
config_ver : lwis_k_99_MaxP | ||
accuracy_level : 99% | ||
inference_server : lwis | ||
skip_file_checks : False | ||
power_limit : None | ||
cpu_freq : None | ||
&&&& RUNNING Default_Harness # ./build/bin/harness_default | ||
[I] mlperf.conf path: /home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf | ||
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/c44de86dadc4420199ad25d6fa563275.conf | ||
Creating QSL. | ||
Finished Creating QSL. | ||
Setting up SUT. | ||
[I] [TRT] Loaded engine size: 72 MiB | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 125, GPU 881 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 127, GPU 891 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB) | ||
[I] Device:0.GPU: [0] ./build/engines/RTX4090x2/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded. | ||
[I] [TRT] Loaded engine size: 72 MiB | ||
[W] [TRT] Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors. | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 159, GPU 624 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +1, GPU +10, now: CPU 160, GPU 634 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +69, now: CPU 0, GPU 137 (MiB) | ||
[I] Device:1.GPU: [0] ./build/engines/RTX4090x2/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded. | ||
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.) | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 88, GPU 893 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 88, GPU 901 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +1, GPU +1528, now: CPU 1, GPU 1665 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 89, GPU 636 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 89, GPU 644 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +1528, now: CPU 1, GPU 3193 (MiB) | ||
[I] Start creating CUDA graphs | ||
[I] Capture 2 CUDA graphs | ||
[I] Capture 2 CUDA graphs | ||
[I] Finish creating CUDA graphs | ||
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false | ||
Finished setting up SUT. | ||
Starting warmup. Running for a minimum of 5 seconds. | ||
Finished warmup. Ran for 5.14292s. | ||
Starting running actual test. | ||
|
||
No warnings encountered during test. | ||
|
||
No errors encountered during test. | ||
Finished running actual test. | ||
Device Device:0.GPU processed: | ||
6195 batches of size 2 | ||
Memcpy Calls: 0 | ||
PerSampleCudaMemcpy Calls: 0 | ||
BatchedCudaMemcpy Calls: 6195 | ||
Device Device:1.GPU processed: | ||
6197 batches of size 2 | ||
Memcpy Calls: 0 | ||
PerSampleCudaMemcpy Calls: 0 | ||
BatchedCudaMemcpy Calls: 6197 | ||
&&&& PASSED Default_Harness # ./build/bin/harness_default | ||
[2024-12-23 02:37:18,118 run_harness.py:166 INFO] Result: Accuracy run detected. | ||
[2024-12-23 02:37:18,118 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json | ||
loading annotations into memory... | ||
Done (t=0.52s) | ||
creating index... | ||
index created! | ||
Loading and preparing results... | ||
DONE (t=17.77s) | ||
creating index... | ||
index created! | ||
Running per image evaluation... | ||
Evaluate annotation type *bbox* | ||
DONE (t=133.59s). | ||
Accumulating evaluation results... | ||
DONE (t=31.87s). | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374 | ||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522 | ||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.628 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.345 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.678 | ||
mAP=37.356% | ||
|
||
======================== Result summaries: ======================== | ||
|
Oops, something went wrong.