Skip to content

Commit

Permalink
creating function for create_test_df_in_defined_mode
Browse files Browse the repository at this point in the history
Signed-off-by: arunjose696 <[email protected]>
  • Loading branch information
arunjose696 committed Aug 28, 2024
1 parent 8e8ec46 commit 04b7f60
Show file tree
Hide file tree
Showing 10 changed files with 247 additions and 170 deletions.
102 changes: 45 additions & 57 deletions modin/core/storage_formats/pandas/query_compiler_caster.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ def __init_subclass__(
**kwargs : Additional keyword arguments
"""
super().__init_subclass__(**kwargs)
apply_argument_cast()(cls)
apply_argument_cast(cls)


def cast_nested_args_to_current_qc_type(arguments, current_qc):
Expand Down Expand Up @@ -100,61 +100,49 @@ def cast_arg_to_current_qc(arg):
return arguments


def apply_argument_cast():
"""
Cast any of args that is a query compiler to the type of left query compiler.
def apply_argument_cast(obj: Fn) -> Fn:
"""Cast all arguments that are query compilers to the current query compiler."""
if isinstance(obj, type):
all_attrs = dict(inspect.getmembers(obj))
all_attrs.pop("__abstractmethods__")

# This is required because inspect converts class methods to member functions
current_class_attrs = vars(obj)
for key in current_class_attrs:
all_attrs[key] = current_class_attrs[key]

for attr_name, attr_value in all_attrs.items():
if isinstance(
attr_value, (FunctionType, MethodType, classmethod, staticmethod)
):
wrapped = apply_argument_cast(attr_value)
setattr(obj, attr_name, wrapped)
return obj # type: ignore [return-value]
elif isinstance(obj, classmethod):
return classmethod(apply_argument_cast(obj.__func__)) # type: ignore [return-value, arg-type]
elif isinstance(obj, staticmethod):
return staticmethod(apply_argument_cast(obj.__func__))

Check warning on line 124 in modin/core/storage_formats/pandas/query_compiler_caster.py

View check run for this annotation

Codecov / codecov/patch

modin/core/storage_formats/pandas/query_compiler_caster.py#L124

Added line #L124 was not covered by tests

@functools.wraps(obj)
def cast_args(*args: Tuple, **kwargs: Dict) -> Any:
"""
Add casting for query compiler arguments.
Returns
-------
func
A decorator function.
"""
Parameters
----------
*args : tuple
The function arguments.
**kwargs : dict
The function keyword arguments.
Returns
-------
Any
"""
current_qc = args[0]
if isinstance(current_qc, BaseQueryCompiler):
kwargs = cast_nested_args_to_current_qc_type(kwargs, current_qc)
args = cast_nested_args_to_current_qc_type(args, current_qc)
return obj(*args, **kwargs)

def decorator(obj: Fn) -> Fn:
"""Cast all arguments that are query compilers to the current query compiler."""
if isinstance(obj, type):
all_attrs = dict(inspect.getmembers(obj))
all_attrs.pop("__abstractmethods__")

# This is required because inspect converts class methods to member functions
current_class_attrs = vars(obj)
for key in current_class_attrs:
all_attrs[key] = current_class_attrs[key]

for attr_name, attr_value in all_attrs.items():
if isinstance(
attr_value, (FunctionType, MethodType, classmethod, staticmethod)
):
wrapped = apply_argument_cast()(attr_value)
setattr(obj, attr_name, wrapped)
return obj # type: ignore [return-value]
elif isinstance(obj, classmethod):
return classmethod(decorator(obj.__func__)) # type: ignore [return-value, arg-type]
elif isinstance(obj, staticmethod):
return staticmethod(decorator(obj.__func__))

@functools.wraps(obj)
def cast_args(*args: Tuple, **kwargs: Dict) -> Any:
"""
Add casting for query compiler arguments.
Parameters
----------
*args : tuple
The function arguments.
**kwargs : dict
The function keyword arguments.
Returns
-------
Any
"""
current_qc = args[0]
if isinstance(current_qc, BaseQueryCompiler):
kwargs = cast_nested_args_to_current_qc_type(kwargs, current_qc)
args = cast_nested_args_to_current_qc_type(args, current_qc)
return obj(*args, **kwargs)

return cast_args

return decorator
return cast_args
22 changes: 16 additions & 6 deletions modin/tests/pandas/native_df_mode/test_binary.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,11 @@
import pytest

from modin.config import NativeDataframeMode, NPartitions
from modin.tests.pandas.native_df_mode.utils import eval_general_interop
from modin.tests.pandas.native_df_mode.utils import (
create_test_df_in_defined_mode,
eval_general_interop,
)
from modin.tests.pandas.utils import (
create_test_dfs,
default_to_pandas_ignore_string,
df_equals,
test_data,
Expand Down Expand Up @@ -153,8 +155,12 @@ def operation(df1, df2):
"df_mode_pair", list(product(NativeDataframeMode.choices, repeat=2))
)
def test_equals(frame1_data, frame2_data, expected_pandas_equals, df_mode_pair):
modin_df1, pandas_df1 = create_test_dfs(frame1_data, df_mode=df_mode_pair[0])
modin_df2, pandas_df2 = create_test_dfs(frame2_data, df_mode=df_mode_pair[1])
modin_df1, pandas_df1 = create_test_df_in_defined_mode(
frame1_data, df_mode=df_mode_pair[0]
)
modin_df2, pandas_df2 = create_test_df_in_defined_mode(
frame2_data, df_mode=df_mode_pair[1]
)

pandas_equals = pandas_df1.equals(pandas_df2)
assert pandas_equals == expected_pandas_equals, (
Expand All @@ -172,8 +178,12 @@ def test_equals(frame1_data, frame2_data, expected_pandas_equals, df_mode_pair):
"df_mode_pair", list(product(NativeDataframeMode.choices, repeat=2))
)
def test_empty_df(empty_operand, df_mode_pair):
modin_df, pandas_df = create_test_dfs([0, 1, 2, 0, 1, 2], df_mode=df_mode_pair[0])
modin_df_empty, pandas_df_empty = create_test_dfs(df_mode=df_mode_pair[1])
modin_df, pandas_df = create_test_df_in_defined_mode(
[0, 1, 2, 0, 1, 2], df_mode=df_mode_pair[0]
)
modin_df_empty, pandas_df_empty = create_test_df_in_defined_mode(
df_mode=df_mode_pair[1]
)

if empty_operand == "right":
modin_res = modin_df + modin_df_empty
Expand Down
40 changes: 24 additions & 16 deletions modin/tests/pandas/native_df_mode/test_default.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,12 @@
import modin.pandas as pd
from modin.config import NativeDataframeMode, NPartitions
from modin.pandas.io import to_pandas
from modin.tests.pandas.native_df_mode.utils import eval_general_interop
from modin.tests.pandas.native_df_mode.utils import (
create_test_df_in_defined_mode,
create_test_series_in_defined_mode,
eval_general_interop,
)
from modin.tests.pandas.utils import (
create_test_dfs,
create_test_series,
default_to_pandas_ignore_string,
df_equals,
test_data,
Expand All @@ -35,7 +37,9 @@
test_data_large_categorical_dataframe,
test_data_values,
)
from modin.tests.test_utils import warns_that_defaulting_to_pandas
from modin.tests.test_utils import (
warns_that_defaulting_to_pandas,
)

NPartitions.put(4)

Expand Down Expand Up @@ -81,12 +85,12 @@
"df_mode_pair", list(product(NativeDataframeMode.choices, repeat=2))
)
def test_ops_defaulting_to_pandas(op, make_args, df_mode_pair):
modin_df1, _ = create_test_dfs(
modin_df1, _ = create_test_df_in_defined_mode(
test_data_diff_dtype,
post_fn=lambda df: df.drop(["str_col", "bool_col"], axis=1),
df_mode=df_mode_pair[0],
)
modin_df2, _ = create_test_dfs(
modin_df2, _ = create_test_df_in_defined_mode(
test_data_diff_dtype,
post_fn=lambda df: df.drop(["str_col", "bool_col"], axis=1),
df_mode=df_mode_pair[1],
Expand Down Expand Up @@ -118,10 +122,10 @@ def test_to_numpy(data):
)
def test_asfreq(df_mode_pair):
index = pd.date_range("1/1/2000", periods=4, freq="min")
series, _ = create_test_series(
series, _ = create_test_series_in_defined_mode(
[0.0, None, 2.0, 3.0], index=index, df_mode=df_mode_pair[0]
)
df, _ = create_test_dfs({"s": series}, df_mode=df_mode_pair[1])
df, _ = create_test_df_in_defined_mode({"s": series}, df_mode=df_mode_pair[1])
with warns_that_defaulting_to_pandas():
# We are only testing that this defaults to pandas, so we will just check for
# the warning
Expand Down Expand Up @@ -152,9 +156,13 @@ def assign_multiple_columns(df1, df2):
)
def test_combine_first(df_mode_pair):
data1 = {"A": [None, 0], "B": [None, 4]}
modin_df1, pandas_df1 = create_test_dfs(data1, df_mode=df_mode_pair[0])
modin_df1, pandas_df1 = create_test_df_in_defined_mode(
data1, df_mode=df_mode_pair[0]
)
data2 = {"A": [1, 1], "B": [3, 3]}
modin_df2, pandas_df2 = create_test_dfs(data2, df_mode=df_mode_pair[1])
modin_df2, pandas_df2 = create_test_df_in_defined_mode(
data2, df_mode=df_mode_pair[1]
)

df_equals(
modin_df1.combine_first(modin_df2),
Expand All @@ -170,11 +178,11 @@ def test_combine_first(df_mode_pair):
)
def test_dot(data, df_mode_pair):

modin_df, pandas_df = create_test_dfs(data, df_mode=df_mode_pair[0])
modin_df, pandas_df = create_test_df_in_defined_mode(data, df_mode=df_mode_pair[0])
col_len = len(modin_df.columns)

# Test series input
modin_series, pandas_series = create_test_series(
modin_series, pandas_series = create_test_series_in_defined_mode(
np.arange(col_len),
index=pandas_df.columns,
df_mode=df_mode_pair[1],
Expand All @@ -194,7 +202,7 @@ def dot_func(df1, df2):

# Test when input series index doesn't line up with columns
with pytest.raises(ValueError):
modin_series_without_index, _ = create_test_series(
modin_series_without_index, _ = create_test_series_in_defined_mode(
np.arange(col_len), df_mode=df_mode_pair[1]
)
modin_df.dot(modin_series_without_index)
Expand All @@ -209,7 +217,7 @@ def dot_func(df1, df2):
"df_mode_pair", list(product(NativeDataframeMode.choices, repeat=2))
)
def test_matmul(data, df_mode_pair):
modin_df, pandas_df = create_test_dfs(data, df_mode=df_mode_pair[0])
modin_df, pandas_df = create_test_df_in_defined_mode(data, df_mode=df_mode_pair[0])
col_len = len(modin_df.columns)

# Test list input
Expand All @@ -223,7 +231,7 @@ def test_matmul(data, df_mode_pair):
modin_df @ np.arange(col_len + 10)

# Test series input
modin_series, pandas_series = create_test_series(
modin_series, pandas_series = create_test_series_in_defined_mode(
np.arange(col_len),
index=pandas_df.columns,
df_mode=df_mode_pair[1],
Expand All @@ -241,7 +249,7 @@ def matmul_func(df1, df2):

# Test when input series index doesn't line up with columns
with pytest.raises(ValueError):
modin_series_without_index, _ = create_test_series(
modin_series_without_index, _ = create_test_series_in_defined_mode(
np.arange(col_len), df_mode=df_mode_pair[1]
)
modin_df @ modin_series_without_index

Check notice

Code scanning / CodeQL

Statement has no effect Note test

This statement has no effect.
Expand Down
Loading

0 comments on commit 04b7f60

Please sign in to comment.