-
Notifications
You must be signed in to change notification settings - Fork 537
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
322 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
# Copyright 2022 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from llmfoundry.tokenizers.tiktoken import TiktokenTokenizerWrapper | ||
|
||
__all__ = [ | ||
'TiktokenTokenizerWrapper', | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
# Copyright 2022 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Any, Dict, List, Optional, Tuple, Union | ||
|
||
import torch | ||
from transformers import PreTrainedTokenizer | ||
|
||
|
||
class TiktokenTokenizerWrapper(PreTrainedTokenizer): | ||
"""A thin wrapper around tiktoken to make it compatible with Hugging Face. | ||
tokenizers. | ||
See HuggingFace for further documentation on general tokenizer methods. | ||
""" | ||
|
||
model_input_names = ['input_ids', 'attention_mask'] | ||
|
||
def __init__(self, | ||
model_name: Optional[str] = None, | ||
encoding_name: Optional[str] = None, | ||
add_bos_token: bool = False, | ||
unk_token: Optional[str] = '<|endoftext|>', | ||
eos_token: Optional[str] = '<|endoftext|>', | ||
bos_token: Optional[str] = '<|endoftext|>', | ||
mask_token: Optional[str] = "[MASK]", | ||
pad_token: Optional[str] = None, | ||
**kwargs: Dict[str, Any]): | ||
"""Constructor creates a tiktoken tokenizer to use as the underlying. | ||
tokenizer. | ||
Args: | ||
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None. | ||
Either model_name or encoding_name must be set, but not both. | ||
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None. | ||
Either model_name or encoding_name must be set, but not both. | ||
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False. | ||
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'. | ||
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'. | ||
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'. | ||
pad_token (Optional[str], optional): The pad token. Defaults to None. | ||
""" | ||
try: | ||
import tiktoken | ||
except: | ||
raise ImportError( | ||
'You need to install tiktoken to use TiktokenTokenizerWrapper.') | ||
|
||
if model_name is not None and encoding_name is not None: | ||
raise ValueError( | ||
'You need to specify either model_name or encoding_name, not both.' | ||
) | ||
|
||
self.model_name = model_name | ||
self.encoding_name = encoding_name | ||
|
||
if self.model_name is not None: | ||
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty) | ||
self.model_name) | ||
elif self.encoding_name is not None: | ||
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty) | ||
self.encoding_name) | ||
else: | ||
raise ValueError( | ||
'You need to specify either model_name or encoding_name.') | ||
|
||
self.add_bos_token = add_bos_token | ||
|
||
super().__init__(model_name=model_name, | ||
encoding_name=encoding_name, | ||
add_bos_token=add_bos_token, | ||
unk_token=unk_token, | ||
eos_token=eos_token, | ||
bos_token=bos_token, | ||
pad_token=pad_token, | ||
mask_token=mask_token, | ||
**kwargs) | ||
|
||
@property | ||
def vocab_size(self) -> int: | ||
"""Returns vocab size.""" | ||
return self.encoding.n_vocab | ||
|
||
@property | ||
def is_fast(self) -> bool: | ||
return False | ||
|
||
def get_vocab(self) -> Dict[str, int]: | ||
"""Returns vocab as a dict.""" | ||
vocab = {} | ||
for i in range(self.vocab_size): | ||
try: | ||
# need to try this first, so that we get a proper KeyError, | ||
# otherwise it crashes in the rust code | ||
_ = self.encoding.decode_single_token_bytes(i) | ||
vocab[self.encoding.decode([i])] = i | ||
except KeyError: | ||
pass | ||
|
||
return vocab | ||
|
||
def _tokenize(self, text: str) -> List[int]: | ||
"""Returns a tokenized string. | ||
Note: We have slightly redefined the expected contract between this method and | ||
the _convert_token_to_id method. Normally, this method turns a string, into a list of strings, | ||
and then the _convert_token_to_id method turns that list of strings into a list of integers. | ||
However, not all vocab indices can be decoded into a string, so instead we just return the integers | ||
from this function, and have adjusted the _convert_token_to_id method to handle integers as well as strings. | ||
The only use of _tokenize that I could find was in this way, so this _should_ be safe. | ||
""" | ||
if not isinstance(text, str): | ||
raise ValueError( | ||
f'Expected a string input to _tokenize but got {type(text)}.') | ||
|
||
tokens = [t for t in self.encoding.encode(text, allowed_special='all')] | ||
|
||
return tokens | ||
|
||
def _convert_token_to_id(self, token: Union[int, str]) -> int: | ||
"""Converts a token (str) into an id using the vocab.""" | ||
if isinstance(token, int): | ||
return token | ||
|
||
return self.encoding.encode(token, allowed_special='all')[0] | ||
|
||
def _convert_id_to_token(self, index: int) -> str: | ||
"""Converts an index (integer) into a token (str) using the vocab.""" | ||
return self.encoding.decode([index]) | ||
|
||
def convert_tokens_to_string(self, tokens: List[str]) -> str: | ||
"""Converts a sequence of tokens (string) in a single string.""" | ||
return ''.join(tokens) | ||
|
||
def convert_ids_to_tokens( | ||
self, | ||
ids: Union[int, List[int]], | ||
skip_special_tokens: bool = False) -> Union[str, List[str]]: | ||
"""Converts a single index or a sequence of indices into a token or a. | ||
sequence of tokens, using the vocabulary and added tokens. | ||
Args: | ||
ids (`int` or `List[int]`): | ||
The token id (or token ids) to convert to tokens. | ||
skip_special_tokens (`bool`, *optional*, defaults to `False`): | ||
Whether or not to remove special tokens in the decoding. | ||
Returns: | ||
`str` or `List[str]`: The decoded token(s). | ||
""" | ||
if isinstance(ids, int): | ||
if ids in self.added_tokens_decoder: | ||
return self.added_tokens_decoder[ids] | ||
|
||
return self._convert_id_to_token(ids) | ||
|
||
# current_stream will collect multiple tokens, and then separately add items | ||
# for each added token. This is done so that decode works properly with token ids | ||
# that cannot be represented naively in utf-8. | ||
tokens = [] | ||
current_stream = [] | ||
for index in ids: | ||
if skip_special_tokens and index in self.all_special_ids: | ||
continue | ||
|
||
if index in self.added_tokens_decoder: | ||
tokens.append(self.encoding.decode(current_stream)) | ||
current_stream = [] | ||
tokens.append(self.added_tokens_decoder[index]) | ||
else: | ||
current_stream.append(index) | ||
|
||
if len(current_stream) > 0: | ||
tokens.append(self.encoding.decode(current_stream)) | ||
return tokens | ||
|
||
def build_inputs_with_special_tokens( | ||
self, | ||
token_ids_0: List[int], | ||
token_ids_1: Optional[List[int]] = None) -> List[int]: | ||
if self.add_bos_token: | ||
bos_token_ids = [self.bos_token_id] | ||
else: | ||
bos_token_ids = [] | ||
|
||
output = bos_token_ids + token_ids_0 | ||
|
||
if token_ids_1 is None: | ||
return output | ||
|
||
return output + bos_token_ids + token_ids_1 | ||
|
||
def get_special_tokens_mask( | ||
self, | ||
token_ids_0: List[int], | ||
token_ids_1: Optional[List[int]] = None, | ||
already_has_special_tokens: bool = False) -> List[int]: | ||
"""Retrieves sequence ids from a token list that has no special tokens. | ||
Function copied from | ||
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295 | ||
added. This method is called when adding special tokens using the | ||
tokenizer `prepare_for_model` or `encode_plus` methods. | ||
Args: | ||
token_ids_0 (`List[int]`): | ||
List of IDs. | ||
token_ids_1 (`List[int]`, *optional*): | ||
Optional second list of IDs for sequence pairs. | ||
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | ||
Whether or not the token list is already formatted with special tokens for the model. | ||
Returns: | ||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | ||
""" | ||
if already_has_special_tokens: | ||
return super().get_special_tokens_mask( | ||
token_ids_0=token_ids_0, | ||
token_ids_1=token_ids_1, | ||
already_has_special_tokens=True) | ||
|
||
if not self.add_bos_token: | ||
return super().get_special_tokens_mask( | ||
token_ids_0=token_ids_0, | ||
token_ids_1=token_ids_1, | ||
already_has_special_tokens=False) | ||
|
||
if token_ids_1 is None: | ||
return [1] + ([0] * len(token_ids_0)) | ||
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) | ||
|
||
def create_token_type_ids_from_sequences( | ||
self, | ||
token_ids_0: List[int], | ||
token_ids_1: Optional[List[int]] = None) -> List[int]: | ||
sep = [self.sep_token_id] | ||
|
||
if token_ids_1 is None: | ||
return len(token_ids_0 + sep) * [0] | ||
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | ||
|
||
def save_vocabulary(self, | ||
save_directory: str, | ||
filename_prefix: Optional[str] = None) -> Tuple[str]: | ||
|
||
# ignore the below type to keep the original signature | ||
# we are knowingly breaking the signature here, although not 100% certain | ||
# it doesn't have side effects | ||
# There is some code in huggingface that calls this function to get the vocab files, | ||
# but it doesn't seem to access them (or at least checks for their existence | ||
# before accessing them) | ||
return (None, None) # type: ignore | ||
|
||
def sanitize_special_tokens(self) -> int: | ||
"""Make sure that all the special tokens attributes of the tokenizer. | ||
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the | ||
vocabulary. | ||
Add the missing ones to the vocabulary if needed. | ||
Return: | ||
`int`: The number of tokens added in the vocabulary during the operation. | ||
""" | ||
actual_new_tokens = [] | ||
for token in self.all_special_tokens_extended: | ||
encoded = self.encoding.encode(token, allowed_special='all') | ||
if len(encoded) > 1: | ||
actual_new_tokens.append(token) | ||
|
||
return self.add_tokens(actual_new_tokens, special_tokens=True) | ||
|
||
def construct_logit_tensor(self, logprobs: Dict[str, | ||
float]) -> torch.Tensor: | ||
"""Construct tensor of shape (vocab_size,) mapping words to logprobs. | ||
Args: | ||
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model. | ||
""" | ||
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size)) | ||
for k in logprobs: | ||
encoding = self(k)['input_ids'] | ||
idx = encoding[0] | ||
tensor[idx] = logprobs[k] | ||
return tensor | ||
|
||
|
||
TiktokenTokenizerWrapper.register_for_auto_class() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters