-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfilter_normal_panel.R
executable file
·141 lines (118 loc) · 6.88 KB
/
filter_normal_panel.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env Rscript
##########################################################################################
# Identify somatic variants in a MAF with sufficient support in a panel of curated normals
# and tag them with FILTER "normal_panel" in an output MAF
##########################################################################################
annotate_maf <- function(maf, fillout, normal.count) {
maf[, tmp_id := stringr::str_c('chr', Chromosome,
':', Start_Position,
'-', End_Position,
':', Reference_Allele,
':', Tumor_Seq_Allele1,
':', Tumor_Sample_Barcode)]
maf <- merge(maf,fillout, by='tmp_id')
fillout <- fillout[fillout$normal_panel_occurrences >= normal.count,]
if (!('FILTER' %in% names(maf))) maf$FILTER = '.'
normal_panel.blacklist <- unique(fillout$tmp_id)
maf.annotated <- maf[, normal_panel := tmp_id %in% normal_panel.blacklist]
maf.annotated <- maf[, FILTER := ifelse(normal_panel == TRUE & hotspot_whitelist == FALSE, ifelse((FILTER == '' | FILTER == '.' | FILTER == 'PASS' | is.na(FILTER) ), 'normal_panel', paste0(FILTER, ';normal_panel')), FILTER)]
return(maf.annotated)
}
parse_fillout_vcf <- function(fillout) {
# Convert GetBaseCountsMultiSample output
fillout = melt(fillout, id.vars = colnames(fillout)[1:34], variable.name = 'Tumor_Sample_Barcode') %>%
separate(value, into = c('n_depth','n_ref_count','n_alt_count','n_var_freq'), sep = ';') %>%
mutate(n_depth = str_extract(n_depth, regex('[0-9].*'))) %>%
mutate(n_ref_count = str_extract(n_ref_count, regex('[0-9].*'))) %>%
mutate(n_alt_count = str_extract(n_alt_count, regex('[0-9].*'))) %>%
mutate(n_var_freq = str_extract(n_var_freq, regex('[0-9].*'))) %>%
mutate(TAG = stringr::str_c('chr', Chrom, ':', Start, '-', Start, ':', Ref, ':', Alt))
# Note, variant might be present multiple times if occuring in more than one sample, fix this
# at the fillout step by de-duping the MAF
fillout = mutate(fillout, tmp_id = stringr::str_c(Tumor_Sample_Barcode, Chrom, Start, Ref, Alt, Gene))
fillout = fillout[!duplicated(fillout$tmp_id),]
# Calculate frequencies and return
return(group_by(fillout, TAG) %>% summarize(normal_count = sum(n_alt_count>=1)))
}
parse_fillout_maf <- function(maf, fillout, chosen.proportion, min_tpvf) {
fillout[, TAG := stringr::str_c('chr', Chromosome,
':', Start_Position,
'-', End_Position,
':', Reference_Allele,
':', Tumor_Seq_Allele1)]
fillout[, tmp_id := stringr::str_c('chr', Chromosome,
':', Start_Position,
'-', End_Position,
':', Reference_Allele,
':', Tumor_Seq_Allele1,
':', Tumor_Sample_Barcode)]
fillout = fillout[!duplicated(fillout$tmp_id),]
if (!('TAG' %in% names(maf))) {
maf[, TAG := stringr::str_c('chr', Chromosome,
':', Start_Position,
'-', End_Position,
':', Reference_Allele,
':', Tumor_Seq_Allele2)]
}
maf[, tmp_id := stringr::str_c('chr', Chromosome,
':', Start_Position,
'-', End_Position,
':', Reference_Allele,
':', Tumor_Seq_Allele1,
':', Tumor_Sample_Barcode)]
# Calculate tumor VAF and from that the required TPVF
maf$t_alt_count[maf$t_alt_count=='.'] <- 0
maf$t_alt_count<- as.numeric(maf$t_alt_count)
maf$vaf <- maf$t_alt_count / maf$t_depth
maf$tpvf <- maf$vaf / chosen.proportion
maf$tpvf[maf$tpvf < min_tpvf] <- min_tpvf
maf.shortlist<-select(maf,TAG,tmp_id,tpvf)
# Compare each normal panel VAF to the TPVF and count occurrences
normpanel<-select(fillout,TAG,t_variant_frequency,t_alt_count)
normpanel <- normpanel[normpanel$t_alt_count >= 1,]
fulljoin.maf<-full_join(maf.shortlist,normpanel,by='TAG')
fulljoin.maf$normal_panel_occurrences <- fulljoin.maf$t_variant_frequency >= fulljoin.maf$tpvf
normalpanel_df <- group_by(fulljoin.maf,tmp_id) %>% summarize(normal_panel_occurrences=sum(normal_panel_occurrences),normal_panel_mean_alt_count=mean(t_alt_count))
normalpanel_df[is.na(normalpanel_df)] <- 0
normalpanel_df$normal_panel_mean_alt_count <- round(normalpanel_df$normal_panel_mean_alt_count)
return(normalpanel_df)
}
if( ! interactive() ) {
pkgs = c('data.table', 'argparse', 'reshape2', 'dplyr', 'tidyr', 'stringr')
junk <- lapply(pkgs, function(p){suppressPackageStartupMessages(require(p, character.only = T))})
rm(junk)
parser=ArgumentParser()
parser$add_argument('-m', '--maf', type='character', default='stdin', help='MAF format file listing predicted somatic events')
parser$add_argument('-f', '--fillout', type='character', help='Output file generated by GetBaseCountsMultiSample for the same somatic events')
parser$add_argument('-fo', '--fillout_format', type='double', default=1, help='GetBaseCountsMultiSample output format. MAF-like (1) or VCF-like (2) (Default: 1)')
parser$add_argument('-c', '--chosen_proportion', type='double', default=10, help='Tumor VAF divided by this produces the tumor proportional variant fraction (TPVF) (Default: 10)')
parser$add_argument('-t', '--min_tpvf', type='double', default=0.001, help='Minimum TPVF that a normal VAF must exceed to be considered occurring in the normal (Default: 0.001)')
parser$add_argument('-n', '--normal_count', type='double', default=5, help='Minimum number of normal samples that must have VAF>=TPVF (5)')
parser$add_argument('-o', '--outfile', type='character', default='stdout', help='Output file')
args=parser$parse_args()
maf <- suppressWarnings(fread(args$maf, colClasses=c(Chromosome="character"), showProgress = F))
fillout <- suppressWarnings(fread(args$fillout, colClasses=c(Chromosome="character"), showProgress = F))
fillout.format<-args$fillout_format
normal.count <- args$normal_count
chosen.proportion <- args$chosen_proportion
min_tpvf <- args$min_tpvf
outfile <- args$outfile
if(fillout.format == 2) {
parsed_fillout = parse_fillout_vcf(fillout)
maf.out <- annotate_maf(maf, parsed_fillout, normal.count)
}
else {
parsed_fillout = parse_fillout_maf(maf,fillout,chosen.proportion,min_tpvf)
maf.out <- annotate_maf(maf, parsed_fillout, normal.count)
}
# Write the new tagged MAF in output, excluding a few unimportant columns
maf.out$normal_panel <- NULL
maf.out$TAG<- NULL
maf.out$tmp_id<- NULL
if (outfile == 'stdout') {
write.table(maf.out, stdout(), na="", sep = "\t", col.names = T, row.names = F, quote = F)
}
else {
write.table(maf.out, outfile, na="", sep = "\t", col.names = T, row.names = F, quote = F)
}
}