forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add minigpt4 gradio demo and training script. (open-mmlab#1758
) * Add minigpt4 gradio demo * update minigpt4 demo * update minigpt4 demo (inference with float16) * update minigpt4 and some dependent files * add minigpt4 dataset for training * add training script for minigpt4 * restore files deleted by mistake * fix an error * remove useless modification * provide command line arguments for minigpt4 gradio demo and update some comments * update code * Update minigpt-4 readme --------- Co-authored-by: mzr1996 <[email protected]>
- Loading branch information
Showing
9 changed files
with
651 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
_base_ = [ | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
data_preprocessor = dict( | ||
type='MultiModalDataPreprocessor', | ||
mean=[122.770938, 116.7460125, 104.09373615], | ||
std=[68.5005327, 66.6321579, 70.32316305], | ||
to_rgb=True, | ||
) | ||
|
||
# dataset settings | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='Resize', | ||
scale=(224, 224), | ||
interpolation='bicubic', | ||
backend='pillow'), | ||
dict(type='RandomFlip', prob=0.5, direction='horizontal'), | ||
dict( | ||
type='CleanCaption', | ||
keys='chat_content', | ||
remove_chars='', | ||
lowercase=False), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['chat_content', 'lang'], | ||
meta_keys=['image_id']), | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=2, | ||
num_workers=4, | ||
dataset=dict( | ||
type='MiniGPT4Dataset', | ||
data_root='YOUR_DATA_DIRECTORY', | ||
ann_file='YOUR_DATA_FILE', | ||
pipeline=train_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
collate_fn=dict(type='default_collate'), | ||
drop_last=False, | ||
) | ||
|
||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='Resize', | ||
scale=(224, 224), | ||
interpolation='bicubic', | ||
backend='pillow'), | ||
dict(type='PackInputs', meta_keys=['image_id']), | ||
] | ||
|
||
test_evaluator = dict( | ||
type='COCOCaption', | ||
ann_file='data/coco/annotations/coco_karpathy_val_gt.json', | ||
) | ||
|
||
test_dataloader = dict( | ||
batch_size=1, | ||
dataset=dict( | ||
type='COCOCaption', | ||
data_root='data/coco', | ||
ann_file='annotations/coco_karpathy_val.json', | ||
pipeline=test_pipeline)) | ||
|
||
# model settings | ||
model = dict( | ||
type='MiniGPT4', | ||
vision_encoder=dict( | ||
type='BEiTViT', | ||
# eva-g without the final layer | ||
arch=dict( | ||
embed_dims=1408, | ||
num_layers=39, | ||
num_heads=16, | ||
feedforward_channels=6144, | ||
), | ||
img_size=224, | ||
patch_size=14, | ||
layer_scale_init_value=0.0, | ||
frozen_stages=39, | ||
use_abs_pos_emb=True, | ||
use_rel_pos_bias=False, | ||
final_norm=False, | ||
use_shared_rel_pos_bias=False, | ||
out_type='raw', | ||
pretrained= # noqa | ||
'https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_eva-g-p14_20230615-e908c021.pth' # noqa | ||
), | ||
q_former_model=dict( | ||
type='Qformer', | ||
model_style='bert-base-uncased', | ||
vision_model_width=1408, | ||
add_cross_attention=True, | ||
cross_attention_freq=2, | ||
num_query_token=32, | ||
pretrained= # noqa | ||
'https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_qformer_20230615-1dfa889c.pth' # noqa | ||
), | ||
lang_encoder=dict( | ||
type='AutoModelForCausalLM', | ||
name_or_path='baichuan-inc/baichuan-7B', | ||
trust_remote_code=True), | ||
tokenizer=dict( | ||
type='AutoTokenizer', | ||
name_or_path='baichuan-inc/baichuan-7B', | ||
trust_remote_code=True), | ||
task='caption', | ||
prompt_template=dict([('en', '###Ask: {} ###Answer: '), | ||
('zh', '###问:{} ###答:')]), | ||
raw_prompts=dict([ | ||
('en', [('<Img><ImageHere></Img> ' | ||
'Describe this image in detail.'), | ||
('<Img><ImageHere></Img> ' | ||
'Take a look at this image and describe what you notice.'), | ||
('<Img><ImageHere></Img> ' | ||
'Please provide a detailed description of the picture.'), | ||
('<Img><ImageHere></Img> ' | ||
'Could you describe the contents of this image for me?')]), | ||
('zh', [('<Img><ImageHere></Img> ' | ||
'详细描述这张图片。'), ('<Img><ImageHere></Img> ' | ||
'浏览这张图片并描述你注意到什么。'), | ||
('<Img><ImageHere></Img> ' | ||
'请对这张图片进行详细的描述。'), | ||
('<Img><ImageHere></Img> ' | ||
'你能为我描述这张图片的内容吗?')]) | ||
]), | ||
max_txt_len=160, | ||
end_sym='###') | ||
|
||
strategy = dict( | ||
type='DeepSpeedStrategy', | ||
fp16=dict( | ||
enabled=True, | ||
auto_cast=False, | ||
fp16_master_weights_and_grads=False, | ||
loss_scale=0, | ||
loss_scale_window=1000, | ||
hysteresis=1, | ||
min_loss_scale=1, | ||
initial_scale_power=16, | ||
), | ||
inputs_to_half=[0], | ||
zero_optimization=dict( | ||
stage=2, | ||
allgather_partitions=True, | ||
allgather_bucket_size=2e8, | ||
reduce_scatter=True, | ||
reduce_bucket_size='auto', | ||
overlap_comm=True, | ||
contiguous_gradients=True, | ||
), | ||
) | ||
|
||
# schedule settings | ||
optim_wrapper = dict( | ||
type='DeepSpeedOptimWrapper', | ||
optimizer=dict(type='AdamW', lr=1e-3, weight_decay=0.05)) | ||
|
||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', | ||
start_factor=1e-3 / 500, | ||
by_epoch=False, | ||
begin=0, | ||
end=500, | ||
), | ||
dict( | ||
type='CosineAnnealingLR', | ||
eta_min=2e-4, | ||
by_epoch=False, | ||
begin=500, | ||
), | ||
] | ||
|
||
train_cfg = dict(by_epoch=True, max_epochs=6) | ||
test_cfg = dict() | ||
|
||
runner_type = 'FlexibleRunner' | ||
|
||
default_hooks = dict( | ||
checkpoint=dict( | ||
type='CheckpointHook', | ||
interval=1, | ||
by_epoch=True, | ||
save_last=True, | ||
max_keep_ckpts=1, | ||
)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from typing import List | ||
|
||
import mmengine | ||
from mmengine.dataset import BaseDataset | ||
from mmengine.fileio import get_file_backend | ||
|
||
from mmpretrain.registry import DATASETS | ||
|
||
|
||
@DATASETS.register_module() | ||
class MiniGPT4Dataset(BaseDataset): | ||
"""Dataset for training MiniGPT4. | ||
MiniGPT4 dataset directory: | ||
minigpt4_dataset | ||
├── image | ||
│ ├── id0.jpg | ||
│ │── id1.jpg | ||
│ │── id2.jpg | ||
│ └── ... | ||
└── conversation_data.json | ||
The structure of conversation_data.json: | ||
[ | ||
// English data | ||
{ | ||
"id": str(id0), | ||
"conversation": "###Ask: <Img><ImageHere></Img> [Ask content] | ||
###Answer: [Answer content]" | ||
}, | ||
// Chinese data | ||
{ | ||
"id": str(id1), | ||
"conversation": "###问:<Img><ImageHere></Img> [Ask content] | ||
###答:[Answer content]" | ||
}, | ||
... | ||
] | ||
Args: | ||
data_root (str): The root directory for ``ann_file`` and ``image``. | ||
ann_file (str): Conversation file path. | ||
**kwargs: Other keyword arguments in :class:`BaseDataset`. | ||
""" | ||
|
||
def load_data_list(self) -> List[dict]: | ||
file_backend = get_file_backend(self.data_root) | ||
conversation_path = file_backend.join_path(self.data_root, | ||
self.ann_file) | ||
conversation = mmengine.load(conversation_path) | ||
img_ids = {} | ||
n = 0 | ||
for conv in conversation: | ||
img_id = conv['id'] | ||
if img_id not in img_ids.keys(): | ||
img_ids[img_id] = n | ||
n += 1 | ||
|
||
img_root = file_backend.join_path(self.data_root, 'image') | ||
data_list = [] | ||
for conv in conversation: | ||
img_file = '{}.jpg'.format(conv['id']) | ||
chat_content = conv['conversation'] | ||
lang = 'en' if chat_content.startswith('###Ask: ') else 'zh' | ||
data_info = { | ||
'image_id': img_ids[conv['id']], | ||
'img_path': file_backend.join_path(img_root, img_file), | ||
'chat_content': chat_content, | ||
'lang': lang, | ||
} | ||
|
||
data_list.append(data_info) | ||
|
||
return data_list |
Oops, something went wrong.