Skip to content

Commit

Permalink
[Feature] Add minigpt4 gradio demo and training script. (open-mmlab#1758
Browse files Browse the repository at this point in the history
)

* Add minigpt4 gradio demo

* update minigpt4 demo

* update minigpt4 demo (inference with float16)

* update minigpt4 and some dependent files

* add minigpt4 dataset for training

* add training script for minigpt4

* restore files deleted by mistake

* fix an error

* remove useless modification

* provide command line arguments for minigpt4 gradio demo and update some comments

* update code

* Update minigpt-4 readme

---------

Co-authored-by: mzr1996 <[email protected]>
  • Loading branch information
hmtbgc and mzr1996 authored Oct 12, 2023
1 parent 5c71de6 commit c076651
Show file tree
Hide file tree
Showing 9 changed files with 651 additions and 50 deletions.
7 changes: 4 additions & 3 deletions configs/minigpt4/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,10 @@ For Vicuna model, please refer to [MiniGPT-4 page](https://github.com/Vision-CAI

### Pretrained models

| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------ | :--------: | :-------: | :--------------------------------------: | :------------------------------------------------------------------------------------------------------------: |
| `minigpt-4_vicuna-7b_caption`\* | 8121.32 | N/A | [config](minigpt-4_vicuna-7b_caption.py) | [model](https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_linear-projection_20230615-714b5f52.pth) |
| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------ | :--------: | :-------: | :----------------------------------------: | :----------------------------------------------------------------------------------------------------------: |
| `minigpt-4_baichuan-7b_caption` | 8094.77 | N/A | [config](minigpt-4_baichuan-7b_caption.py) | [model](https://download.openmmlab.com/mmclassification/v1/minigpt4/minigpt-4_linear_baichuan7b_20231011-5dca7ed6.pth) |
| `minigpt-4_vicuna-7b_caption`\* | 8121.32 | N/A | [config](minigpt-4_vicuna-7b_caption.py) | [model](https://download.openmmlab.com/mmclassification/v1/minigpt4/minigpt-4_linear_vicuna7b_20230615-714b5f52.pth) |

*Models with * are converted from the [official repo](https://github.com/Vision-CAIR/MiniGPT-4/tree/main). The config files of these models are only for inference. We haven't reproduce the training results.*

Expand Down
13 changes: 12 additions & 1 deletion configs/minigpt4/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,19 @@ Models:
- Task: Image Caption
Dataset: COCO
Metrics: null
Weights: https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_linear-projection_20230615-714b5f52.pth
Weights: https://download.openmmlab.com/mmclassification/v1/minigpt4/minigpt-4_linear_vicuna7b_20230615-714b5f52.pth
Config: configs/minigpt4/minigpt-4_vicuna-7b_caption.py
Converted From:
Weights: https://github.com/Vision-CAIR/MiniGPT-4/tree/main
Code: https://github.com/Vision-CAIR/MiniGPT-4/tree/main
- Name: minigpt-4_baichuan-7b_caption
Metadata:
FLOPs: null
Parameters: 8094769024
In Collection: MiniGPT4
Results:
- Task: Image Caption
Dataset: COCO
Metrics: null
Weights: https://download.openmmlab.com/mmclassification/v1/minigpt4/minigpt-4_linear_baichuan7b_20231011-5dca7ed6.pth
Config: configs/minigpt4/minigpt-4_baichuan-7b_caption.py
190 changes: 190 additions & 0 deletions configs/minigpt4/minigpt-4_baichuan-7b_caption.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
_base_ = [
'../_base_/default_runtime.py',
]

data_preprocessor = dict(
type='MultiModalDataPreprocessor',
mean=[122.770938, 116.7460125, 104.09373615],
std=[68.5005327, 66.6321579, 70.32316305],
to_rgb=True,
)

# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(224, 224),
interpolation='bicubic',
backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='CleanCaption',
keys='chat_content',
remove_chars='',
lowercase=False),
dict(
type='PackInputs',
algorithm_keys=['chat_content', 'lang'],
meta_keys=['image_id']),
]

train_dataloader = dict(
batch_size=2,
num_workers=4,
dataset=dict(
type='MiniGPT4Dataset',
data_root='YOUR_DATA_DIRECTORY',
ann_file='YOUR_DATA_FILE',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
drop_last=False,
)

test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(224, 224),
interpolation='bicubic',
backend='pillow'),
dict(type='PackInputs', meta_keys=['image_id']),
]

test_evaluator = dict(
type='COCOCaption',
ann_file='data/coco/annotations/coco_karpathy_val_gt.json',
)

test_dataloader = dict(
batch_size=1,
dataset=dict(
type='COCOCaption',
data_root='data/coco',
ann_file='annotations/coco_karpathy_val.json',
pipeline=test_pipeline))

# model settings
model = dict(
type='MiniGPT4',
vision_encoder=dict(
type='BEiTViT',
# eva-g without the final layer
arch=dict(
embed_dims=1408,
num_layers=39,
num_heads=16,
feedforward_channels=6144,
),
img_size=224,
patch_size=14,
layer_scale_init_value=0.0,
frozen_stages=39,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
final_norm=False,
use_shared_rel_pos_bias=False,
out_type='raw',
pretrained= # noqa
'https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_eva-g-p14_20230615-e908c021.pth' # noqa
),
q_former_model=dict(
type='Qformer',
model_style='bert-base-uncased',
vision_model_width=1408,
add_cross_attention=True,
cross_attention_freq=2,
num_query_token=32,
pretrained= # noqa
'https://download.openmmlab.com/mmpretrain/v1.0/minigpt4/minigpt-4_qformer_20230615-1dfa889c.pth' # noqa
),
lang_encoder=dict(
type='AutoModelForCausalLM',
name_or_path='baichuan-inc/baichuan-7B',
trust_remote_code=True),
tokenizer=dict(
type='AutoTokenizer',
name_or_path='baichuan-inc/baichuan-7B',
trust_remote_code=True),
task='caption',
prompt_template=dict([('en', '###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')]),
raw_prompts=dict([
('en', [('<Img><ImageHere></Img> '
'Describe this image in detail.'),
('<Img><ImageHere></Img> '
'Take a look at this image and describe what you notice.'),
('<Img><ImageHere></Img> '
'Please provide a detailed description of the picture.'),
('<Img><ImageHere></Img> '
'Could you describe the contents of this image for me?')]),
('zh', [('<Img><ImageHere></Img> '
'详细描述这张图片。'), ('<Img><ImageHere></Img> '
'浏览这张图片并描述你注意到什么。'),
('<Img><ImageHere></Img> '
'请对这张图片进行详细的描述。'),
('<Img><ImageHere></Img> '
'你能为我描述这张图片的内容吗?')])
]),
max_txt_len=160,
end_sym='###')

strategy = dict(
type='DeepSpeedStrategy',
fp16=dict(
enabled=True,
auto_cast=False,
fp16_master_weights_and_grads=False,
loss_scale=0,
loss_scale_window=1000,
hysteresis=1,
min_loss_scale=1,
initial_scale_power=16,
),
inputs_to_half=[0],
zero_optimization=dict(
stage=2,
allgather_partitions=True,
allgather_bucket_size=2e8,
reduce_scatter=True,
reduce_bucket_size='auto',
overlap_comm=True,
contiguous_gradients=True,
),
)

# schedule settings
optim_wrapper = dict(
type='DeepSpeedOptimWrapper',
optimizer=dict(type='AdamW', lr=1e-3, weight_decay=0.05))

param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-3 / 500,
by_epoch=False,
begin=0,
end=500,
),
dict(
type='CosineAnnealingLR',
eta_min=2e-4,
by_epoch=False,
begin=500,
),
]

train_cfg = dict(by_epoch=True, max_epochs=6)
test_cfg = dict()

runner_type = 'FlexibleRunner'

default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
by_epoch=True,
save_last=True,
max_keep_ckpts=1,
))
26 changes: 19 additions & 7 deletions configs/minigpt4/minigpt-4_vicuna-7b_caption.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,13 +55,25 @@
type='AutoModelForCausalLM', name_or_path='YOUR_PATH_TO_VICUNA'),
tokenizer=dict(type='LlamaTokenizer', name_or_path='YOUR_PATH_TO_VICUNA'),
task='caption',
prompt_template='###Human: {} ###Assistant: ',
raw_prompts=[
'<Img><ImageHere></Img> Describe this image in detail.',
'<Img><ImageHere></Img> Take a look at this image and describe what you notice.', # noqa
'<Img><ImageHere></Img> Please provide a detailed description of the picture.', # noqa
'<Img><ImageHere></Img> Could you describe the contents of this image for me?', # noqa
],
prompt_template=dict([('en', '###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')]),
raw_prompts=dict([
('en', [('<Img><ImageHere></Img> '
'Describe this image in detail.'),
('<Img><ImageHere></Img> '
'Take a look at this image and describe what you notice.'),
('<Img><ImageHere></Img> '
'Please provide a detailed description of the picture.'),
('<Img><ImageHere></Img> '
'Could you describe the contents of this image for me?')]),
('zh', [('<Img><ImageHere></Img> '
'详细描述这张图片。'), ('<Img><ImageHere></Img> '
'浏览这张图片并描述你注意到什么。'),
('<Img><ImageHere></Img> '
'请对这张图片进行详细的描述。'),
('<Img><ImageHere></Img> '
'你能为我描述这张图片的内容吗?')])
]),
max_txt_len=160,
end_sym='###')

Expand Down
4 changes: 3 additions & 1 deletion mmpretrain/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
from .gqa_dataset import GQA
from .iconqa import IconQA
from .infographic_vqa import InfographicVQA
from .minigpt4_dataset import MiniGPT4Dataset
from .nocaps import NoCaps
from .ocr_vqa import OCRVQA
from .refcoco import RefCOCO
Expand All @@ -56,5 +57,6 @@
'COCOCaption', 'COCORetrieval', 'COCOVQA', 'FlamingoEvalCOCOCaption',
'FlamingoEvalCOCOVQA', 'Flickr30kCaption', 'Flickr30kRetrieval',
'RefCOCO', 'VisualGenomeQA', 'ScienceQA', 'NoCaps', 'GQA', 'TextVQA',
'VSR', 'VizWiz', 'OCRVQA', 'InfographicVQA', 'IconQA'
'VSR', 'VizWiz', 'OCRVQA', 'InfographicVQA', 'IconQA',
'MiniGPT4Dataset'
])
79 changes: 79 additions & 0 deletions mmpretrain/datasets/minigpt4_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List

import mmengine
from mmengine.dataset import BaseDataset
from mmengine.fileio import get_file_backend

from mmpretrain.registry import DATASETS


@DATASETS.register_module()
class MiniGPT4Dataset(BaseDataset):
"""Dataset for training MiniGPT4.
MiniGPT4 dataset directory:
minigpt4_dataset
├── image
│ ├── id0.jpg
│ │── id1.jpg
│ │── id2.jpg
│ └── ...
└── conversation_data.json
The structure of conversation_data.json:
[
// English data
{
"id": str(id0),
"conversation": "###Ask: <Img><ImageHere></Img> [Ask content]
###Answer: [Answer content]"
},
// Chinese data
{
"id": str(id1),
"conversation": "###问:<Img><ImageHere></Img> [Ask content]
###答:[Answer content]"
},
...
]
Args:
data_root (str): The root directory for ``ann_file`` and ``image``.
ann_file (str): Conversation file path.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""

def load_data_list(self) -> List[dict]:
file_backend = get_file_backend(self.data_root)
conversation_path = file_backend.join_path(self.data_root,
self.ann_file)
conversation = mmengine.load(conversation_path)
img_ids = {}
n = 0
for conv in conversation:
img_id = conv['id']
if img_id not in img_ids.keys():
img_ids[img_id] = n
n += 1

img_root = file_backend.join_path(self.data_root, 'image')
data_list = []
for conv in conversation:
img_file = '{}.jpg'.format(conv['id'])
chat_content = conv['conversation']
lang = 'en' if chat_content.startswith('###Ask: ') else 'zh'
data_info = {
'image_id': img_ids[conv['id']],
'img_path': file_backend.join_path(img_root, img_file),
'chat_content': chat_content,
'lang': lang,
}

data_list.append(data_info)

return data_list
Loading

0 comments on commit c076651

Please sign in to comment.