v5.4.0
This release adds prompt templates, conversational task chaining and Hugging Face Hub integration
📃 Prompt templates dynamically generate text using workflow task inputs. This enables chaining multiple prompts and models together.
🤗 Embeddings now integrate with the Hugging Face Hub! Easily share and load embeddings indexes. There is a full embeddings index available for English Wikipedia.
See below for full details on the new features, improvements and bug fixes.
New Features
- Add translation pipeline parameter to return selected models and detected language - Thank you @saucam! (#383, #424)
- Add sample parameter to Faiss ANN (#427)
- Add support for instruction-based embeddings (#428)
- Add Hugging Face Hub integration (#430)
- Add cloud object storage support for uncompressed embeddings indexes (#431)
- Add support for custom cloud providers (#432)
- Add support for storing embeddings config as JSON (#433)
- Add notebook for syncing embeddings with the cloud (#434)
- Add terms method to embeddings (#445)
- Add extractor reference output format (#446)
- Add template task (#448)
- Add prompt template and task chaining example notebook (#451)
Improvements
- Mention the default storage engine - Thank you @hsm207! (#422)
- Refactor archive module into separate package (#429)
- Resolve application references in pipelines (#441)
- Extractor pipeline improvements (#443)
- Allow task action arguments to be dictionaries in addition to tuples (#447)
- Automatically mark embeddings index files for lfs tracking with Hugging Face Hub (#450)
Bug Fixes
- Pin onnxruntime for macOS in build script (#425)