Skip to content
/ rsgm Public

A small rust library for manipulating graphical models

License

Notifications You must be signed in to change notification settings

neuppl/rsgm

Repository files navigation

rsgm

A small library for importing Bayesian networks into Rust. Primarily used for research purposes and for rsdd.

Usage

Converter

The converter directory contains a bif_to_json.py file that converts an arbitrary bif file into the JSON format that can be read by the library. To use it, first install the pgmpy python package. Then, it can be invoked as:

python bif_to_json.py input.bif > output.json

Bayesian Networks

The RSGM library contains tools for parsing and manipulating Bayesian networks from a JSON representation. The example in the examples directory provides the most basic example to do so; this simply prints the JSON representation.

cargo run --example compile -- -f bayesian_networks/sachs.json -m print

In addition, it demonstrates how to compile the Bayesian Network into a CNF, which can then be represented by various decision diagram formats:

cargo run --example compile -- -f bayesian_networks/sachs.json -m bdd
cargo run --example compile -- -f bayesian_networks/sachs.json -m sdd

Here is a "kitchen sink" example that showcases the public API:

fn test_public_api_e2e() {
    /// models the collider A, B -> C
    static NETWORK: &str = r#"{
        "network": "toy_network",
        "variables": ["A", "B", "C"],
        "cpts": {
            "A": [[0.5], [0.5]],
            "B": [[0.25], [0.75]],
            "C": [[0.9, 0.8, 0.3, 0.4], [0.1, 0.2, 0.7, 0.6]]
        },
        "states": {
            "A": ["F", "T"],
            "B": ["F", "T"],
            "C": ["F", "T"]
        },
        "parents" :{
            "A": [],
            "B": [],
            "C": ["A", "B"]
        }
    }"#;

    let bayesian_network = BayesianNetwork::from_json(NETWORK);

    // parents
    assert!(bayesian_network.parents("A").is_empty());
    assert!(bayesian_network.parents("B").is_empty());
    assert_eq!(bayesian_network.parents("C").len(), 2);
    assert!(bayesian_network.parents("C").iter().any(|s| s == "A"));
    assert!(bayesian_network.parents("C").iter().any(|s| s == "B"));

    // parent_assignments
    assert_eq!(
        bayesian_network.parent_assignments("A"),
        vec![HashMap::new()]
    );
    assert_eq!(
        bayesian_network.parent_assignments("B"),
        vec![HashMap::new()]
    );
    assert_eq!(bayesian_network.parent_assignments("C").len(), 4);
    assert!(bayesian_network
        .parent_assignments("C")
        .iter()
        .any(|s| s["A"] == "F" && s["B"] == "F"));
    assert!(bayesian_network
        .parent_assignments("C")
        .iter()
        .any(|s| s["A"] == "F" && s["B"] == "T"));
    assert!(bayesian_network
        .parent_assignments("C")
        .iter()
        .any(|s| s["A"] == "T" && s["B"] == "F"));
    assert!(bayesian_network
        .parent_assignments("C")
        .iter()
        .any(|s| s["A"] == "T" && s["B"] == "T"));

    // variables
    assert_eq!(bayesian_network.variables().len(), 3);
    assert!(bayesian_network.variables().iter().any(|s| s == "A"));
    assert!(bayesian_network.variables().iter().any(|s| s == "B"));
    assert!(bayesian_network.variables().iter().any(|s| s == "C"));

    // assignments
    assert_eq!(bayesian_network.all_possible_assignments("A").len(), 2);
    assert!(bayesian_network
        .all_possible_assignments("A")
        .iter()
        .any(|s| s == "T"));
    assert!(bayesian_network
        .all_possible_assignments("A")
        .iter()
        .any(|s| s == "F"));

    // conditionals
    assert_eq!(
        bayesian_network.conditional_probability("A", "T", &HashMap::from([])),
        0.5
    );
    assert_eq!(
        bayesian_network.conditional_probability(
            "C",
            "T",
            &HashMap::from([
                (String::from("A"), String::from("T")),
                (String::from("B"), String::from("T"))
            ])
        ),
        0.6
    );

    // topo sort
    assert_eq!(bayesian_network.topological_sort().len(), 3);
    assert_eq!(bayesian_network.topological_sort()[0], "A");
    assert_eq!(bayesian_network.topological_sort()[1], "B");
    assert_eq!(bayesian_network.topological_sort()[2], "C");
}

About

A small rust library for manipulating graphical models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published