-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add script to import extracted df/f from suite2p
- Loading branch information
1 parent
c8dac40
commit e13210c
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
from pathlib import Path | ||
|
||
import allensdk.brain_observatory.dff as dff_module | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns | ||
from allensdk.brain_observatory.r_neuropil import NeuropilSubtract | ||
from scipy.io import loadmat | ||
|
||
|
||
def neuropil_subtraction(f, f_neu): | ||
# use default parameters for all methods | ||
neuropil_subtraction = NeuropilSubtract() | ||
neuropil_subtraction.set_F(f, f_neu) | ||
neuropil_subtraction.fit() | ||
|
||
r = neuropil_subtraction.r | ||
|
||
f_corr = f - r * f_neu | ||
|
||
# kernel values to be changed for 3-photon data | ||
# median_kernel_long = 1213, median_kernel_short = 23 | ||
|
||
dff = 100 * dff_module.compute_dff_windowed_median(f_corr) | ||
|
||
return dff, r | ||
|
||
|
||
F_path = Path( | ||
"/Users/lauraporta/local_data/rotation/230822_CAA_1120509/suite2p/plane0/F.npy" | ||
) | ||
f = np.load(F_path) | ||
print(f.shape) | ||
|
||
Fneu_path = Path( | ||
"/Users/lauraporta/local_data/rotation/230822_CAA_1120509/suite2p/plane0/Fneu.npy" | ||
) | ||
fneu = np.load(Fneu_path) | ||
print(fneu.shape) | ||
|
||
dff, r = neuropil_subtraction( | ||
f=f, | ||
f_neu=fneu, | ||
) | ||
|
||
dff = pd.DataFrame(dff.T) | ||
print(dff.shape) | ||
print(dff.head()) | ||
|
||
|
||
path_randperm = Path( | ||
"/Users/lauraporta/local_data/rotation/stimlus_randperm.mat" | ||
) | ||
pseudo_random = loadmat(path_randperm) | ||
rotation_speed = pseudo_random["stimulus_random"][:, 0] | ||
|
||
full_rotation_blocks_direction = pseudo_random["stimulus_random"][:, 2] > 0 | ||
direction = np.where( | ||
full_rotation_blocks_direction, -1, 1 | ||
) # 1 is counterclockwise, -1 is clockwise | ||
|
||
|
||
rotated_frames_path = Path( | ||
"/Users/lauraporta/local_data/rotation/230822_CAA_1120509/derotated_image_stack_full.csv" | ||
) | ||
rotated_frames = pd.read_csv(rotated_frames_path) | ||
print(rotated_frames.head()) | ||
print(rotated_frames.shape) | ||
|
||
full_dataframe = pd.concat([dff, rotated_frames], axis=1) | ||
|
||
subset = full_dataframe[ | ||
(full_dataframe["speed"] == 100) & (full_dataframe["direction"] == -1) | ||
] | ||
|
||
rois_selection = [4, 8, 14, 20, 23] | ||
|
||
merged_mean = pd.DataFrame() | ||
for roi in rois_selection: | ||
mean_response = subset.loc[:, [roi, "rotation_count"]] | ||
mean_response["counter"] = np.zeros(len(mean_response)) - 1 | ||
latest_rotation = -1 | ||
for idx in mean_response.index: | ||
if mean_response.loc[idx, "rotation_count"] > latest_rotation: | ||
counter = 0 | ||
latest_rotation = mean_response.loc[idx, "rotation_count"] | ||
elif mean_response.loc[idx, "rotation_count"] == latest_rotation: | ||
counter += 1 | ||
mean_response.loc[idx, "counter"] = counter | ||
|
||
mean = mean_response.groupby("counter").mean() | ||
|
||
# plt.plot(mean.loc[:, [roi]]) | ||
|
||
merged_mean[f"roi_{roi}"] = mean.loc[:, [roi]] | ||
|
||
custom_params = {"axes.spines.right": False, "axes.spines.top": False} | ||
sns.set_theme(style="ticks", rc=custom_params) | ||
ax = sns.lineplot(merged_mean) | ||
ax.set(xlabel="Frames during rotation (100 deg/s)", ylabel="ΔF/F") | ||
|
||
|
||
print("debug") |