Skip to content

Commit

Permalink
chore: update models of local backend
Browse files Browse the repository at this point in the history
  • Loading branch information
nuffin committed Oct 20, 2024
1 parent d8c5530 commit f26b753
Show file tree
Hide file tree
Showing 7 changed files with 163 additions and 149 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,4 @@ python3 -m llmpa

- [ ] internal LLM server with pytorch and tensorflow
- [ ] add email clients
- [ ] seperate tensorflow and pytorch to two different containers, and add ues API call to switch between them
48 changes: 0 additions & 48 deletions llmpa/backends/local/models/efficientnet.py

This file was deleted.

60 changes: 60 additions & 0 deletions llmpa/backends/local/models/image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import tensorflow as tf
import cv2
import numpy as np
from transformers import TFAutoModel, AutoConfig
from tensorflow.keras.applications import EfficientNetV2B0, ResNet50, preprocess_input as keras_preprocess_input

# EmbeddingExtractor Class with model name as a parameter
class EmbeddingExtractor:
def __init__(self, model_name="EfficientNetV2B0"):
self.model_name = model_name
self.model, self.preprocess_fn = self.load_model()

def load_model(self):
if self.model_name == "EfficientNetV2B0":
base_model = EfficientNetV2B0(include_top=False, pooling="avg")
preprocess_fn = keras_preprocess_input # Define custom preprocessing if needed
elif self.model_name == "ResNet50":
base_model = ResNet50(include_top=False, pooling="avg")
preprocess_fn = keras_preprocess_input # Define custom preprocessing if needed
else:
config = AutoConfig.from_pretrained(self.model_name)
base_model = TFAutoModel.from_pretrained(self.model_name, config=config)
preprocess_fn = keras_preprocess_input # Define custom preprocessing if needed

return tf.keras.Model(inputs=base_model.input, outputs=base_model.output), preprocess_fn

def preprocess_image(self, image):
image = cv2.resize(image, (224, 224))
image = image.astype("float32")
image = self.preprocess_fn(image)
return image

def extract_image_embedding(self, image_path):
image = cv2.imread(image_path)
if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = self.preprocess_image(image)
embedding = self.model.predict(np.expand_dims(image, axis=0))
return embedding.squeeze()
return None

def process_image(self, image_id, file_path):
embedding = self.extract_image_embedding(file_path)
if embedding is not None:
print(f"Extracted embedding for image {image_id}: {embedding.shape}")
else:
print(f"Failed to extract embedding for image {image_id}")
return embedding


if __name__ == "__main__":
image_path = "path_to_your_image.jpg"

# Pass the model name as a parameter
model_name = "microsoft/resnet-50" # Example for Hugging Face model
extractor = EmbeddingExtractor(model_name=model_name)

# Process the image
extractor.process_image(1, image_path)

46 changes: 0 additions & 46 deletions llmpa/backends/local/models/resnet.py

This file was deleted.

101 changes: 101 additions & 0 deletions llmpa/backends/local/models/video.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models.video as models
# import tensorflow as tf
import cv2
import numpy as np
# from tensorflow.keras.applications import EfficientNetV2B0 # Replaceable with other models
from transformers import TFAutoModel # For Hugging Face models
# from tensorflow.keras.models import load_model # To load the converted X3D model


class EmbeddingExtractor:
def __init__(self, model_name="EfficientNetV2B0", input_shape=(224, 224, 3), device="cuda" if torch.cuda.is_available() else "cpu"):
self.model_name = model_name
self.input_shape = input_shape
self.device = device
self.model = self.load_model()

def load_model(self):
## if self.model_name == "EfficientNetV2B0":
## base_model = EfficientNetV2B0(include_top=False, pooling="avg")
## model = tf.keras.Model(inputs=base_model.input, outputs=base_model.output)
## else if self.model_name == "x3d_model_tf":
## # Load the converted X3D model
## model = load_model(self.model_name)
## else:
## # Load a model from Hugging Face if it's a supported video model
## model = TFAutoModel.from_pretrained(self.model_name)
# Load the pre-trained X3D model from torchvision
if self.model_name == "x3d_m":
model = models.video.x3d_x3d_m(pretrained=True)
elif self.model_name == "x3d_s":
model = models.video.x3d_x3d_s(pretrained=True)
elif self.model_name == "x3d_l":
model = models.video.x3d_x3d_l(pretrained=True)
else:
raise ValueError(f"Unsupported model: {self.model_name}")

# Remove the final classification layer to extract embeddings
model = nn.Sequential(*list(model.children())[:-1])
model.to(self.device)
model.eval()

return model

def preprocess_video_frames(self, frames):
## Resize each frame to the input shape for the specific model
# frames = [cv2.resize(frame, (self.input_shape[0], self.input_shape[1])) for frame in frames]
# frames = np.array(frames).astype("float32") / 255.0 # Normalize to [0, 1]
# return frames
# Resize and normalize each frame to the input shape for X3D (3D CNN models expect normalization)
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(self.input_shape),
transforms.ToTensor(),
transforms.Normalize(mean=[0.45, 0.45, 0.45], std=[0.225, 0.225, 0.225])
])
processed_frames = [transform(frame) for frame in frames]
return torch.stack(processed_frames) # Stack frames into a tensor (batch of frames)

def extract_video_embeddings(self, video_path):
cap = cv2.VideoCapture(video_path)
frames = []
success = True
frame_count = 0

# Extract up to 90 frames
while success and frame_count < 90:
success, frame = cap.read()
if success:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
frame_count += 1

cap.release()

if len(frames) > 0:
## frames = self.preprocess_video_frames(frames)
## embeddings = self.model.predict(np.expand_dims(frames, axis=0)) # Add batch dimension
## return embeddings.squeeze() # Return embedding as numpy array
frames_tensor = self.preprocess_video_frames(frames).unsqueeze(0).to(self.device) # Add batch dimension
with torch.no_grad():
embeddings = self.model(frames_tensor)
return embeddings.squeeze().cpu().numpy() # Convert to numpy array
return None

def process_video(self, video_id, file_path):
embeddings = self.extract_video_embeddings(file_path)
if embeddings is not None:
print(f"Extracted embeddings for video {video_id}: {embeddings.shape}")
else:
print(f"Failed to extract embeddings for video {video_id}")
return embeddings


if __name__ == "__main__":
video_path = "path_to_your_video.mp4"
## extractor = EmbeddingExtractor(model_name="EfficientNetV2B0") # Change model name here
extractor = EmbeddingExtractor(model_name="x3d_m") # You can change to x3d_s or x3d_l
extractor.process_video(1, video_path)
55 changes: 0 additions & 55 deletions llmpa/backends/local/models/x3d.py

This file was deleted.

1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,4 @@ opencv-python==4.10.0.84
pymilvus==2.4.8
tensorrt==10.5.0
nvidia-tensorrt==99.0.0
huggingface-hub==0.25.2

0 comments on commit f26b753

Please sign in to comment.