Skip to content

PyTorch implementation of Mixer-nano (#parameters is 0.67M, originally Mixer-S/16 has 18M) with 90.83 % acc. on CIFAR-10. Training from scratch.

License

Notifications You must be signed in to change notification settings

omihub777/MLP-Mixer-CIFAR

Repository files navigation

MLP-Mixer-CIFAR

PyTorch implementation of Mixer-nano (#parameters is 0.67M, originally Mixer-S/16 has 18M) with 90.83 % acc. on CIFAR-10. Training from scratch.

1.Prerequisite

2.Quick Start

$git clone https://github.com/omihub777/MLP-Mixer-CIFAR.git
$cd MLP-Mixer-CIFAR
$bash setup.sh
$main.py --dataset c10 --model mlp_mixer --autoaugment --cutmix-prob 0.5

3.Result

Dataset Acc.(%) Time(hh:mm:ss) Steps
CIFAR-10 90.83% 3:34.31 117.3k
CIFAR-100 67.51% 3:35.26 117.3k
SVHN 97.63% 5:23.26 171.9k
  • Number of Parameters: 0.67M
  • Device: P100 (single GPU)

3.1 CIFAR-10

  • Accuracy

Validation Acc. on CIFAR-10

3.2 CIFAR-100

  • Accuracy

Validation Acc. on CIFAR-100

3.3 SVHN

  • Accuracy

Validation Acc. on SVHN

4. Experiment Settings

Param Value
Adam beta1 0.9
Adam beta2 0.99
AutoAugment True
Batch Size 128
CutMix prob. 0.5
CutMix beta 1.0
Dropout 0.0
Epoch 300
Hidden_C 512
Hidden_S 64
Hidden 128
(Init LR, Last LR) (1e-3, 1e-6)
Label Smoothing 0.1
Layers 8
LR Scheduler Cosine
Optimizer Adam
Random Seed 3407
Weight Decay 5e-5
Warmup 5 epochs

5. Resources

About

PyTorch implementation of Mixer-nano (#parameters is 0.67M, originally Mixer-S/16 has 18M) with 90.83 % acc. on CIFAR-10. Training from scratch.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published