-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'oneapi-src:main' into acl-lnorm-fix
- Loading branch information
Showing
81 changed files
with
2,391 additions
and
787 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
/******************************************************************************* | ||
* Copyright 2024 Intel Corporation | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#include <cassert> | ||
#include <chrono> | ||
#include <iomanip> | ||
#include <iostream> | ||
#include <memory> | ||
#include <random> | ||
#include <string> | ||
#include <vector> | ||
|
||
#include "oneapi/dnnl/dnnl.hpp" | ||
#include "oneapi/dnnl/dnnl_graph.hpp" | ||
|
||
#include "graph_example_utils.hpp" | ||
|
||
using namespace dnnl; | ||
using tag = memory::format_tag; | ||
|
||
using namespace dnnl::graph; | ||
using layout_type = logical_tensor::layout_type; | ||
using dim = logical_tensor::dim; | ||
using dims = logical_tensor::dims; | ||
|
||
struct mlp_dims_t { | ||
dim mb; | ||
dim ic; | ||
dim oc; | ||
}; | ||
|
||
static const int min_runs = 4; | ||
|
||
// this is changed from the fill_random() function in matmul_perf.cpp. | ||
void fill_random(std::vector<float> &out) { | ||
static std::vector<float> random_data_f; | ||
constexpr size_t nrand = 1037; | ||
|
||
if (random_data_f.empty()) { | ||
std::mt19937 generator; | ||
std::uniform_real_distribution<float> dist_f(-1.0f, 1.0f); | ||
|
||
random_data_f.resize(nrand); | ||
for (auto &d : random_data_f) | ||
d = dist_f(generator); | ||
} | ||
|
||
for (size_t i = 0; i < out.size(); i += nrand) { | ||
size_t chunk = std::min(nrand, out.size() - i); | ||
std::memcpy(&out[i], random_data_f.data(), chunk * sizeof(float)); | ||
} | ||
} | ||
|
||
const char *get_type_string(logical_tensor::data_type dt) { | ||
const char *type_string = "unknown"; | ||
|
||
#define TYPE_CASE(T) \ | ||
if (dt == logical_tensor::data_type::T) type_string = #T; | ||
TYPE_CASE(f16); | ||
TYPE_CASE(f32); | ||
TYPE_CASE(bf16); | ||
#undef TYPE_CASE | ||
|
||
return type_string; | ||
} | ||
|
||
void print_test_case(logical_tensor::data_type dt, const mlp_dims_t &p) { | ||
std::cout << '[' << std::setw(4) << get_type_string(dt); | ||
std::cout << " mb = " << p.mb << ", ic = " << p.ic << ", oc = " << p.oc; | ||
std::cout << "] " << std::flush; | ||
} | ||
|
||
void bench_gated_mlp(engine::kind ekind, logical_tensor::data_type dt, | ||
const mlp_dims_t &p, double time_limit = 0.) { | ||
const bool quick_test = (time_limit == 0.); | ||
print_test_case(dt, p); | ||
|
||
allocator alloc = create_allocator(ekind); | ||
|
||
// Create execution dnnl::engine. | ||
dnnl::engine eng = make_engine_with_allocator(ekind, 0, alloc); | ||
// Create dnnl::stream. | ||
dnnl::stream strm(eng); | ||
|
||
// input shape | ||
const dims src_sz = {p.mb, p.ic}; | ||
// weight0/weight1 shape: fc_gate and fc_up | ||
const dims wei0_sz = {p.ic, p.oc}; | ||
// hidden shape | ||
const dims hd_sz = {p.mb, p.oc}; | ||
// weight2 shape: fc_down | ||
const dims wei2_sz = {p.oc, p.ic}; | ||
// output shape | ||
const dims out_sz = {p.mb, p.ic}; | ||
|
||
// Incremental IDs used to create logical tensors and operations. | ||
size_t id = 0; | ||
|
||
// fc_gate | ||
auto src = logical_tensor(id++, dt, src_sz, layout_type::strided); | ||
auto wei0 = logical_tensor(id++, dt, wei0_sz, layout_type::strided); | ||
auto out0 = logical_tensor(id++, dt, hd_sz, layout_type::strided); | ||
auto fc_gate = op(id++, op::kind::MatMul, "fc_gate"); | ||
fc_gate.add_inputs({src, wei0}); | ||
fc_gate.add_outputs({out0}); | ||
|
||
// fc_up | ||
auto wei1 = logical_tensor(id++, dt, wei0_sz, layout_type::strided); | ||
auto out1 = logical_tensor(id++, dt, hd_sz, layout_type::strided); | ||
auto fc_up = op(id++, op::kind::MatMul, "fc_up"); | ||
fc_up.add_inputs({src, wei1}); | ||
fc_up.add_outputs({out1}); | ||
|
||
// activation swish: sigmoid | ||
auto out2 = logical_tensor(id++, dt, hd_sz, layout_type::strided); | ||
auto swi_sig = op(id++, op::kind::Sigmoid, "swish/sigmoid"); | ||
swi_sig.add_inputs({out0}); | ||
swi_sig.add_outputs({out2}); | ||
|
||
// activation swish: multiply | ||
auto out3 = logical_tensor(id++, dt, hd_sz, layout_type::strided); | ||
auto swi_mul = op(id++, op::kind::Multiply, "swish/multiply"); | ||
swi_mul.add_inputs({out0, out2}); | ||
swi_mul.add_outputs({out3}); | ||
|
||
// multiplication | ||
auto out4 = logical_tensor(id++, dt, hd_sz, layout_type::strided); | ||
auto mul = op(id++, op::kind::Multiply, "mul"); | ||
mul.add_inputs({out3, out1}); | ||
mul.add_outputs({out4}); | ||
|
||
// fc_down | ||
auto wei2 = logical_tensor(id++, dt, wei2_sz, layout_type::strided); | ||
auto dst = logical_tensor(id++, dt, out_sz, layout_type::strided); | ||
auto fc_down = op(id++, op::kind::MatMul, "fc_down"); | ||
fc_down.add_inputs({out4, wei2}); | ||
fc_down.add_outputs({dst}); | ||
|
||
// Construct a gated mlp graph with engine kind and operations. | ||
dnnl::graph::graph mlp(ekind); | ||
mlp.add_op(fc_gate); | ||
mlp.add_op(fc_up); | ||
mlp.add_op(swi_sig); | ||
mlp.add_op(swi_mul); | ||
mlp.add_op(mul); | ||
mlp.add_op(fc_down); | ||
mlp.finalize(); | ||
|
||
// Get partitions from the mlp graph. | ||
std::vector<partition> partitions = mlp.get_partitions(); | ||
// This is just for oneDNN testing purpose. | ||
if (partitions.size() != 1) { | ||
std::cout << "unsupported mlp" << std::endl; | ||
return; | ||
} | ||
|
||
// Compile the partition with inputs, outputs, and an engine. | ||
compiled_partition cp | ||
= partitions[0].compile({src, wei0, wei1, wei2}, {dst}, eng); | ||
|
||
// Create tensor objects | ||
auto ts_src = tensor(src, eng); | ||
auto ts_wei0 = tensor(wei0, eng); | ||
auto ts_wei1 = tensor(wei1, eng); | ||
auto ts_wei2 = tensor(wei2, eng); | ||
auto ts_dst = tensor(dst, eng); | ||
|
||
// Allocate user data. | ||
std::vector<float> src_data(product(src_sz)); | ||
std::vector<float> wei0_data(product(wei0_sz)); | ||
std::vector<float> wei1_data(product(wei0_sz)); | ||
std::vector<float> wei2_data(product(wei2_sz)); | ||
|
||
fill_random(src_data); | ||
fill_random(wei0_data); | ||
fill_random(wei1_data); | ||
fill_random(wei2_data); | ||
|
||
// Write data to tensor object's handle. | ||
write_to_dnnl_tensor(src_data.data(), ts_src); | ||
write_to_dnnl_tensor(wei0_data.data(), ts_wei0); | ||
write_to_dnnl_tensor(wei1_data.data(), ts_wei1); | ||
write_to_dnnl_tensor(wei2_data.data(), ts_wei2); | ||
|
||
// Warmup run. | ||
// Execute the compiled partition of mqa. | ||
cp.execute(strm, {ts_src, ts_wei0, ts_wei1, ts_wei2}, {ts_dst}); | ||
|
||
// Wait for the computation to finish. | ||
strm.wait(); | ||
|
||
// First run. | ||
auto start_first = std::chrono::steady_clock::now(); | ||
cp.execute(strm, {ts_src, ts_wei0, ts_wei1, ts_wei2}, {ts_dst}); | ||
strm.wait(); | ||
auto end_first = std::chrono::steady_clock::now(); | ||
std::chrono::duration<double, std::milli> dur_first | ||
= end_first - start_first; | ||
|
||
if (quick_test) return; | ||
|
||
// Timing runs. | ||
const int runs = std::max(min_runs, int(time_limit / dur_first.count())); | ||
auto start = std::chrono::steady_clock::now(); | ||
for (int i = 0; i <= runs; i++) { | ||
cp.execute(strm, {ts_src, ts_wei0, ts_wei1, ts_wei2}, {ts_dst}); | ||
} | ||
strm.wait(); | ||
auto end = std::chrono::steady_clock::now(); | ||
std::chrono::duration<double, std::milli> duration = end - start; | ||
|
||
// Display the results. | ||
double avg_time = (duration.count() - dur_first.count()) / runs; | ||
std::cout << "graph runs: " << runs + 1 << "; "; | ||
std::cout << "avg_time: " << avg_time << " ms" << std::endl; | ||
} | ||
|
||
void bad_args() { | ||
std::cerr << "Usage: graph-gated-mlp-cpp [cpu|gpu]\n" | ||
" graph-gated-mlp-cpp [cpu|gpu] <mb> <ic> <oc>\n\n"; | ||
throw std::invalid_argument("Incorrect input arguments."); | ||
} | ||
|
||
void bench(engine::kind ekind, dnnl_data_type_t dt, const mlp_dims_t &p, | ||
double time_limit = 0.) { | ||
try { | ||
bench_gated_mlp(ekind, static_cast<logical_tensor::data_type>(dt), p, | ||
time_limit); | ||
get_mem_pool().clear(); | ||
} catch (dnnl::error &e) { | ||
// Catch and report unimplemented cases. | ||
if (e.status == dnnl_unimplemented) { | ||
std::cout << "unsupported mlp" << std::endl; | ||
} else | ||
throw; | ||
} | ||
} | ||
|
||
void mlp_perf(engine::kind ekind, int argc, char **argv) { | ||
// default testing parameters | ||
mlp_dims_t params = {1, 4096, 14336}; | ||
|
||
if (argc > 2) { | ||
if (argc == 5) { | ||
params.mb = std::atoi(argv[2]); | ||
params.ic = std::atoi(argv[3]); | ||
params.oc = std::atoi(argv[4]); | ||
} else { | ||
bad_args(); | ||
} | ||
|
||
if (params.mb <= 0 || params.ic <= 0 || params.oc <= 0) { bad_args(); } | ||
} | ||
|
||
bench(ekind, dnnl_f32, params, 2000.0 /*ms*/); | ||
bench(ekind, dnnl_bf16, params, 2000.0 /*ms*/); | ||
bench(ekind, dnnl_f16, params, 2000.0 /*ms*/); | ||
} | ||
|
||
int main(int argc, char **argv) { | ||
return handle_example_errors( | ||
mlp_perf, parse_engine_kind(argc, argv, 3), argc, argv); | ||
} |
Oops, something went wrong.