Skip to content

Commit

Permalink
examples: add lbr_gru example
Browse files Browse the repository at this point in the history
  • Loading branch information
shu1chen committed May 13, 2024
1 parent 72dff2c commit f7cf55d
Show file tree
Hide file tree
Showing 2 changed files with 211 additions and 2 deletions.
12 changes: 10 additions & 2 deletions doc/primitives/rnn.md
Original file line number Diff line number Diff line change
Expand Up @@ -477,10 +477,18 @@ details on how to use and set these quantization parameters.

## Example

1. [LSTM RNN Primitive Example](@ref lstm_example_cpp)
[LSTM RNN Primitive Example](@ref lstm_example_cpp)

@copydetails lstm_example_cpp_short

2. [Vanilla RNN Primitive Example](@ref vanilla_rnn_example_cpp)
[Vanilla RNN Primitive Example](@ref vanilla_rnn_example_cpp)

@copydetails vanilla_rnn_example_cpp_short

[AUGRU RNN Primitive Example](@ref augru_example_cpp)

@copydetails augru_example_cpp_short

[Linear-Before-Reset GRU RNN Primitive Example](@ref lbr_gru_example_cpp)

@copydetails lbr_gru_example_cpp_short
201 changes: 201 additions & 0 deletions examples/primitives/lbr_gru.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
/*******************************************************************************
* Copyright 2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

/// @example lbr_gru.cpp
/// > Annotated version: @ref lbr_gru_example_cpp
///
/// @page lbr_gru_example_cpp_short
///
/// This C++ API example demonstrates how to create and execute a
/// [Linear-Before-Reset GRU RNN](@ref dev_guide_rnn) primitive in forward
/// training propagation mode.
///
/// Key optimizations included in this example:
/// - Creation of optimized memory format from the primitive descriptor.
///
/// @page lbr_gru_example_cpp Linear-Before-Reset GRU RNN Primitive Example
/// @copydetails lbr_gru_example_cpp_short
///
/// @include lbr_gru.cpp

#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>

#include "dnnl.hpp"
#include "example_utils.hpp"

using namespace dnnl;

using tag = memory::format_tag;
using dt = memory::data_type;

void lbr_gru_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);

// Create dnnl::stream.
dnnl::stream engine_stream(engine);

// Tensor dimensions.
const memory::dim N = 2, // batch size
T = 3, // time steps
IC = 2, // src channels
OC = 3, // dst channels
G = 3, // gates
L = 1, // layers
D = 1, // directions
E = 1; // extra Bias number. Extra Bias for u' gate

// Source (src), weights, bias, attention, and destination (dst) tensors
// dimensions.
memory::dims src_dims = {T, N, IC};
memory::dims weights_layer_dims = {L, D, IC, G, OC};
memory::dims weights_iter_dims = {L, D, OC, G, OC};
memory::dims bias_dims = {L, D, G + E, OC};
memory::dims dst_layer_dims = {T, N, OC};
memory::dims dst_iter_dims = {L, D, N, OC};

// Allocate buffers.
std::vector<float> src_layer_data(product(src_dims));
std::vector<float> weights_layer_data(product(weights_layer_dims));
std::vector<float> weights_iter_data(product(weights_iter_dims));
std::vector<float> bias_data(product(bias_dims));
std::vector<float> dst_layer_data(product(dst_layer_dims));
std::vector<float> dst_iter_data(product(dst_iter_dims));

// Initialize src, weights, and bias tensors.
std::generate(src_layer_data.begin(), src_layer_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(weights_iter_data.begin(), weights_iter_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(bias_data.begin(), bias_data.end(), []() {
static int i = 0;
return std::tanh(float(i++));
});

// Create memory descriptors and memory objects for src, bias, and dst.
auto src_layer_md = memory::desc(src_dims, dt::f32, tag::tnc);
auto bias_md = memory::desc(bias_dims, dt::f32, tag::ldgo);
auto dst_layer_md = memory::desc(dst_layer_dims, dt::f32, tag::tnc);

auto src_layer_mem = memory(src_layer_md, engine);
auto bias_mem = memory(bias_md, engine);
auto dst_layer_mem = memory(dst_layer_md, engine);

// Create memory objects for weights using user's memory layout. In this
// example, LDIGO (num_layers, num_directions, input_channels, num_gates,
// output_channels) is assumed.
auto user_weights_layer_mem
= memory({weights_layer_dims, dt::f32, tag::ldigo}, engine);
auto user_weights_iter_mem
= memory({weights_iter_dims, dt::f32, tag::ldigo}, engine);

// Write data to memory object's handle.
// For GRU cells, the gates order is update, reset and output
// gate except the bias. For the bias tensor, the gates order is
// u, r, o and u' gate.
write_to_dnnl_memory(src_layer_data.data(), src_layer_mem);
write_to_dnnl_memory(bias_data.data(), bias_mem);
write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem);
write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem);

// Create memory descriptors for weights with format_tag::any. This enables
// the lbr_gru primitive to choose the optimized memory layout.
auto weights_layer_md = memory::desc(weights_layer_dims, dt::f32, tag::any);
auto weights_iter_md = memory::desc(weights_iter_dims, dt::f32, tag::any);

// Optional memory descriptors for recurrent data.
// Default memory descriptor for initial hidden states of the GRU cells
auto src_iter_md = memory::desc();
auto dst_iter_md = memory::desc();

// Create primitive descriptor.
auto lbr_gru_pd = lbr_gru_forward::primitive_desc(engine,
prop_kind::forward_training,
rnn_direction::unidirectional_left2right, src_layer_md, src_iter_md,
weights_layer_md, weights_iter_md, bias_md, dst_layer_md,
dst_iter_md);

// For now, assume that the weights memory layout generated by the primitive
// and the ones provided by the user are identical.
auto weights_layer_mem = user_weights_layer_mem;
auto weights_iter_mem = user_weights_iter_mem;

// Reorder the data in case the weights memory layout generated by the
// primitive and the one provided by the user are different. In this case,
// we create additional memory objects with internal buffers that will
// contain the reordered data.
if (lbr_gru_pd.weights_desc() != user_weights_layer_mem.get_desc()) {
weights_layer_mem = memory(lbr_gru_pd.weights_desc(), engine);
reorder(user_weights_layer_mem, weights_layer_mem)
.execute(engine_stream, user_weights_layer_mem,
weights_layer_mem);
}

if (lbr_gru_pd.weights_iter_desc() != user_weights_iter_mem.get_desc()) {
weights_iter_mem = memory(lbr_gru_pd.weights_iter_desc(), engine);
reorder(user_weights_iter_mem, weights_iter_mem)
.execute(
engine_stream, user_weights_iter_mem, weights_iter_mem);
}

// Create the memory objects from the primitive descriptor. A workspace is
// also required for Linear-Before-Reset GRU RNN.
// NOTE: Here, the workspace is required for later usage in backward
// propagation mode.
auto src_iter_mem = memory(lbr_gru_pd.src_iter_desc(), engine);
auto dst_iter_mem = memory(lbr_gru_pd.dst_iter_desc(), engine);
auto workspace_mem = memory(lbr_gru_pd.workspace_desc(), engine);

// Create the primitive.
auto lbr_gru_prim = lbr_gru_forward(lbr_gru_pd);

// Primitive arguments
std::unordered_map<int, memory> lbr_gru_args;
lbr_gru_args.insert({DNNL_ARG_SRC_LAYER, src_layer_mem});
lbr_gru_args.insert({DNNL_ARG_WEIGHTS_LAYER, weights_layer_mem});
lbr_gru_args.insert({DNNL_ARG_WEIGHTS_ITER, weights_iter_mem});
lbr_gru_args.insert({DNNL_ARG_BIAS, bias_mem});
lbr_gru_args.insert({DNNL_ARG_DST_LAYER, dst_layer_mem});
lbr_gru_args.insert({DNNL_ARG_SRC_ITER, src_iter_mem});
lbr_gru_args.insert({DNNL_ARG_DST_ITER, dst_iter_mem});
lbr_gru_args.insert({DNNL_ARG_WORKSPACE, workspace_mem});

// Primitive execution: lbr_gru.
lbr_gru_prim.execute(engine_stream, lbr_gru_args);

// Wait for the computation to finalize.
engine_stream.wait();

// Read data from memory object's handle.
read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem);
}

int main(int argc, char **argv) {
return handle_example_errors(
lbr_gru_example, parse_engine_kind(argc, argv));
}

0 comments on commit f7cf55d

Please sign in to comment.