Skip to content

Commit

Permalink
Update STAR lbs & render (#355)
Browse files Browse the repository at this point in the history
* Update STAR lbs & render

* Update star forward

* Add helper script for GTA-Human visualization (#357)

* [Upgrade] Specify the numpy version less than 1.24. (#361)

* downgrade numpy version to 1.23.1

* specify numpy version to <=1.23.1

* specify numpy version as <1.24

* fix lint

* Update description of HumanData (English and Chinese) (#356)

* Update human_data.md

* Update human_data.md

* Update human_data.md

* fix

* minor docs update English & Chinese

* minor docs update English & Chinese

---------

Co-authored-by: wei-chen-hub <[email protected]>

* fix linting problem

* Update STAR model

---------

Co-authored-by: wendaizhou <[email protected]>
Co-authored-by: Zhongang Cai <[email protected]>
Co-authored-by: ttxskk <[email protected]>
Co-authored-by: WEI CHEN <[email protected]>
Co-authored-by: wei-chen-hub <[email protected]>
  • Loading branch information
6 people authored Jul 10, 2023
1 parent 0e1f101 commit 9431add
Show file tree
Hide file tree
Showing 6 changed files with 681 additions and 50 deletions.
152 changes: 152 additions & 0 deletions configs/hmr/star_pw3d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
_base_ = ['../_base_/default_runtime.py']
use_adversarial_train = True

# evaluate
evaluation = dict(metric=['pa-mpjpe', 'mpjpe'])
# optimizer
optimizer = dict(
backbone=dict(type='Adam', lr=2.5e-4), head=dict(type='Adam', lr=2.5e-4))
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='Fixed', by_epoch=False)
runner = dict(type='EpochBasedRunner', max_epochs=100)

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])

img_res = 224

# model settings
model = dict(
type='ImageBodyModelEstimator',
backbone=dict(
type='ResNet',
depth=50,
out_indices=[3],
norm_eval=False,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
head=dict(type='HMRHead', feat_dim=2048),
body_model_train=dict(
type='STAR',
keypoint_src='smpl',
keypoint_dst='star',
model_path='data/body_models/star',
keypoint_approximate=True),
body_model_test=dict(
type='STAR',
keypoint_src='smpl',
keypoint_dst='star',
model_path='data/body_models/star'),
convention='star',
loss_keypoints3d=dict(type='SmoothL1Loss', loss_weight=100),
loss_keypoints2d=dict(type='SmoothL1Loss', loss_weight=10),
loss_vertex=dict(type='L1Loss', loss_weight=2),
loss_smpl_pose=dict(type='MSELoss', loss_weight=3),
loss_smpl_betas=dict(type='MSELoss', loss_weight=0.02))
# dataset settings
dataset_type = 'HumanImageDataset'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data_keys = [
'has_smpl', 'smpl_body_pose', 'smpl_global_orient', 'smpl_betas',
'smpl_transl', 'keypoints2d', 'keypoints3d', 'sample_idx', 'has_smpl',
'has_keypoints2d', 'has_keypoints3d'
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomChannelNoise', noise_factor=0.4),
dict(type='RandomHorizontalFlip', flip_prob=0.5, convention='star'),
dict(type='GetRandomScaleRotation', rot_factor=30, scale_factor=0.25),
dict(type='MeshAffine', img_res=img_res),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='RandomErasing'),
dict(type='ToTensor', keys=data_keys),
dict(
type='Collect',
keys=['img', *data_keys],
meta_keys=['image_path', 'center', 'scale', 'rotation'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='GetRandomScaleRotation', rot_factor=0, scale_factor=0),
dict(type='MeshAffine', img_res=img_res),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=data_keys),
dict(
type='Collect',
keys=['img', *data_keys],
meta_keys=['image_path', 'center', 'scale', 'rotation'])
]

inference_pipeline = [
dict(type='MeshAffine', img_res=img_res),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img', 'sample_idx'],
meta_keys=['image_path', 'center', 'scale', 'rotation', 'origin_img'])
]

data = dict(
samples_per_gpu=32,
workers_per_gpu=1,
train=dict(
type='MixedDataset',
configs=[
dict(
type=dataset_type,
dataset_name='pw3d',
data_prefix='data',
pipeline=train_pipeline,
convention='star',
ann_file='star.npz'),
dict(
type=dataset_type,
dataset_name='mpi_inf_3dhp',
data_prefix='data',
pipeline=train_pipeline,
convention='star',
ann_file='mpi_inf_3dhp_1_4.npz'),
dict(
type=dataset_type,
dataset_name='h36m',
data_prefix='data',
pipeline=train_pipeline,
convention='star',
ann_file='h36m_train_new.npz'),
],
partition=[0.4, 0.3, 0.3],
),
val=dict(
type=dataset_type,
dataset_name='h36m',
body_model=dict(
type='STAR',
keypoint_src='h36m',
keypoint_dst='h36m',
model_path='data/body_models/star'),
data_prefix='data',
pipeline=test_pipeline,
convention='star',
ann_file='h36m_test.npz'),
test=dict(
type=dataset_type,
dataset_name='h36m',
body_model=dict(
type='STAR',
keypoint_src='h36m',
keypoint_dst='h36m',
model_path='data/body_models/star'),
data_prefix='data',
pipeline=test_pipeline,
convention='star',
ann_file='h36m_test.npz'),
)
Loading

0 comments on commit 9431add

Please sign in to comment.