Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Make a qrcode-generator based on mmagic #135

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions mmagic_qrcode_generator/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Introduction

I make a QR Code Generator by Stable Diffusion and Controlnet.

Must set `mmagic/models/archs/wrapper.py` line 90:

`self.model = module_cls.from_pretrained(from_pretrained,use_safetensors=True, *args,**kwargs)`

# Demo

A simple demo is provided.

```shell
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cd mmagic_qrcode_generator

python demo/qrcode_inference_demo.py \
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

python qrcode_inference_demo.py

--config controlnet-brightness.py \
--qrcode_img 'test.png' \
--prompt 'dreamlikeart, an zebra' \
--negative_prompt 'ugly, bad quality' \
--resize 440 640 \
--output_size 440 640 \
--num_inference_steps 50 \
--guidance_scale 7.5 \
--unet_model 'dreamlike-art/dreamlike-diffusion-1.0' \
--vae_model 'dreamlike-art/dreamlike-diffusion-1.0' \
--controlnet_model 'ioclab/control_v1p_sd15_brightness' \
--controlnet_conditioning_scale 0.7 \
--num_generated_img 5 \
--save_path 'output'
```

The generated images will be save in `output/[num]_sample.png`.

If the generated QR code is not recognizable, try increasing `controlnet_conditioning_scale`.

One result display (using the parameters of the demo above)`qrcode_example.png`.
51 changes: 51 additions & 0 deletions mmagic_qrcode_generator/controlnet-brightness.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'

model = dict(
type = 'ControlStableDiffusion',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
controlnet=dict(
type='ControlNetModel',
attention_head_dim = 8,
block_out_channels = [320,640,1280,1280],
conditioning_embedding_out_channels=[16,32,96,256],
controlnet_conditioning_channel_order="rgb",
cross_attention_dim = 768,
down_block_types = ["CrossAttnDownBlock2D","CrossAttnDownBlock2D","CrossAttnDownBlock2D","DownBlock2D"],
downsample_padding = 1,
flip_sin_to_cos=True,
freq_shift= 0,
in_channels= 4,
layers_per_block= 2,
mid_block_scale_factor = 1,
norm_eps= 1e-05,
norm_num_groups= 32,
only_cross_attention= False,
resnet_time_scale_shift= "default",
sample_size= 32,
upcast_attention= False,
use_linear_projection= False
),
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='DataPreprocessor'),
init_cfg=dict(type='init_from_unet'))
Binary file added mmagic_qrcode_generator/qrcode_exmple.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
108 changes: 108 additions & 0 deletions mmagic_qrcode_generator/qrcode_inference_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# Copyright (c) OpenMMLab. All rights reserved.

import cv2
import numpy as np
import mmcv
from mmengine import Config
from PIL import Image
import os
from argparse import ArgumentParser

from mmagic.registry import MODELS
from mmagic.utils import register_all_modules


def parse_args():
parser = ArgumentParser()

# input
parser.add_argument(
'--qrcode_img', type=str, default=None, help='Input QRcode image file.')
parser.add_argument(
'--prompt', type=str, default=None, help='Input prompt.')
parser.add_argument(
'--negative_prompt', type=str, default=None, help='Input negative prompt.')
parser.add_argument(
'--config', type=str, default=None, help='Input config.')

# parameters
parser.add_argument(
'--resize', nargs='+', help='Resize the input QRcode image, must be a multiple of 8')
parser.add_argument(
'--output_size', nargs='+', help='Output image size, must be a multiple of 8')
parser.add_argument(
'--num_inference_steps', type=int, default=50, help='Number of inference steps.')
parser.add_argument(
'--guidance_scale', type=float, default=7.5, help='guidance scale.')
parser.add_argument(
'--controlnet_conditioning_scale', type=float, default=0.6, help='Controlnet conditioning scale.')
parser.add_argument(
'--num_generated_img', type=int, default=5, help='Number of generated images.')
parser.add_argument(
'--save_path', type=str, default=None, help='Generated image save path.')

# models
parser.add_argument(
'--unet_model', type=str, default=None, help='Change unet mdoel.')
parser.add_argument(
'--vae_model', type=str, default=None, help='Change vae mdoel.')
parser.add_argument(
'--controlnet_model', type=str, default=None, help='Change controlnet mdoel.')

args = parser.parse_args()

return args

def main():
args = parse_args()
register_all_modules()

cfg = Config.fromfile(args.config)
cfg.model.unet.from_pretrained = args.unet_model
cfg.model.vae.from_pretrained = args.vae_model
cfg.model.controlnet.from_pretrained = args.controlnet_model


cfg.model.init_cfg['type'] = 'convert_from_unet'
controlnet = MODELS.build(cfg.model).cuda()

# call init_weights manually to convert weight
controlnet.init_weights()

prompt = args.prompt
negative_prompt = args.negative_prompt
control_path = args.qrcode_img
control_img = mmcv.imread(control_path)
control_img = cv2.resize(control_img, (int(args.resize[0]),int(args.resize[1])))
control_img = control_img[:,:,0:1]
control_img = np.concatenate([control_img]*3, axis=2)
control = Image.fromarray(control_img)

num_inference_steps = args.num_inference_steps
guidance_scale = args.guidance_scale
num_images_per_prompt = 1
controlnet_conditioning_scale = args.controlnet_conditioning_scale
height=int(args.resize[1])
width=int(args.resize[0])

num = args.num_generated_img
save_path = args.save_path

for i in range(num):
output_dict = controlnet.infer(
prompt = prompt,
control = control,
height = height,
width = width,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
negative_prompt=negative_prompt,
)
samples = output_dict['samples']
savepath = os.path.join(save_path, str(i)+'_sample.png')
samples[0].save(savepath)

if __name__ == '__main__':
main()