Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MNIST test to run multi-node distributed training using KFTO #295

Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
250 changes: 250 additions & 0 deletions tests/kfto/kfto_mnist_training_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
/*
Copyright 2023.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package kfto

import (
"bytes"
"fmt"
"os"
"testing"

kftov1 "github.com/kubeflow/training-operator/pkg/apis/kubeflow.org/v1"
. "github.com/onsi/gomega"
. "github.com/project-codeflare/codeflare-common/support"

corev1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
)

func TestPyTorchJobMnistCpu(t *testing.T) {
runKFTOPyTorchMnistJob(t, 0, "", GetCudaTrainingImage(), "resources/requirements.txt")
}

func TestPyTorchJobMnistWithCuda(t *testing.T) {
runKFTOPyTorchMnistJob(t, 1, "nvidia.com/gpu", GetCudaTrainingImage(), "resources/requirements.txt")
}

func TestPyTorchJobMnistWithROCm(t *testing.T) {
runKFTOPyTorchMnistJob(t, 1, "amd.com/gpu", GetROCmTrainingImage(), "resources/requirements-rocm.txt")
}

func runKFTOPyTorchMnistJob(t *testing.T, numGpus int, gpuLabel string, image string, requirementsFile string) {
test := With(t)

// Create a namespace
namespace := test.NewTestNamespace()

workingDirectory, err := os.Getwd()
test.Expect(err).ToNot(HaveOccurred())

mnist, err := os.ReadFile(workingDirectory + "/resources/mnist.py")
abhijeet-dhumal marked this conversation as resolved.
Show resolved Hide resolved
test.Expect(err).ToNot(HaveOccurred())

requirementsFileName, err := os.ReadFile(workingDirectory + "/" + requirementsFile)
if numGpus > 0 {
mnist = bytes.Replace(mnist, []byte("accelerator=\"has to be specified\""), []byte("accelerator=\"gpu\""), 1)
} else {
mnist = bytes.Replace(mnist, []byte("accelerator=\"has to be specified\""), []byte("accelerator=\"cpu\""), 1)
}
config := CreateConfigMap(test, namespace.Name, map[string][]byte{
// MNIST Ray Notebook
"mnist.py": mnist,
"requirements.txt": requirementsFileName,
})

// Create PVC for trained model
outputPvc := CreatePersistentVolumeClaim(test, namespace.Name, "50Gi", corev1.ReadWriteMany)
defer test.Client().Core().CoreV1().PersistentVolumeClaims(namespace.Name).Delete(test.Ctx(), outputPvc.Name, metav1.DeleteOptions{})

// Create training PyTorch job
tuningJob := createKFTOPyTorchMnistJob(test, namespace.Name, *config, gpuLabel, numGpus, outputPvc.Name, image)
defer test.Client().Kubeflow().KubeflowV1().PyTorchJobs(namespace.Name).Delete(test.Ctx(), tuningJob.Name, *metav1.NewDeleteOptions(0))

// Make sure the PyTorch job is running
test.Eventually(PyTorchJob(test, namespace.Name, tuningJob.Name), TestTimeoutDouble).
Should(WithTransform(PyTorchJobConditionRunning, Equal(corev1.ConditionTrue)))

// Make sure the PyTorch job succeeded
test.Eventually(PyTorchJob(test, namespace.Name, tuningJob.Name), TestTimeoutDouble).Should(WithTransform(PyTorchJobConditionSucceeded, Equal(corev1.ConditionTrue)))
test.T().Logf("PytorchJob %s/%s ran successfully", tuningJob.Namespace, tuningJob.Name)

}

func createKFTOPyTorchMnistJob(test Test, namespace string, config corev1.ConfigMap, gpuLabel string, numGpus int, outputPvcName string, baseImage string) *kftov1.PyTorchJob {
var useGPU = false
var backend string

if numGpus > 0 {
useGPU = true
backend = "nccl"
} else {
backend = "gloo"
}

tuningJob := &kftov1.PyTorchJob{
TypeMeta: metav1.TypeMeta{
APIVersion: corev1.SchemeGroupVersion.String(),
Kind: "PyTorchJob",
},
ObjectMeta: metav1.ObjectMeta{
GenerateName: "kfto-mnist-",
},
Spec: kftov1.PyTorchJobSpec{
PyTorchReplicaSpecs: map[kftov1.ReplicaType]*kftov1.ReplicaSpec{
"Master": {
Replicas: Ptr(int32(1)),
RestartPolicy: kftov1.RestartPolicyOnFailure,
Template: corev1.PodTemplateSpec{
Spec: corev1.PodSpec{
Containers: []corev1.Container{
{
Name: "pytorch",
Image: baseImage,
ImagePullPolicy: corev1.PullIfNotPresent,
Command: []string{
"/bin/bash", "-c",
fmt.Sprintf(`mkdir -p /tmp/lib && export PYTHONPATH=$PYTHONPATH:/tmp/lib && \
pip install --no-cache-dir -r /mnt/files/requirements.txt --target=/tmp/lib && \
python /mnt/files/mnist.py --epochs 1 --save-model --backend %s`, backend),
},
VolumeMounts: []corev1.VolumeMount{
{
Name: config.Name,
MountPath: "/mnt/files",
},
{
Name: "tmp-volume",
MountPath: "/tmp",
},
},
},
},
Volumes: []corev1.Volume{
{
Name: config.Name,
VolumeSource: corev1.VolumeSource{
ConfigMap: &corev1.ConfigMapVolumeSource{
LocalObjectReference: corev1.LocalObjectReference{
Name: config.Name,
},
},
},
},
{
Name: "tmp-volume",
VolumeSource: corev1.VolumeSource{
EmptyDir: &corev1.EmptyDirVolumeSource{},
},
},
},
RestartPolicy: corev1.RestartPolicyOnFailure,
},
},
},
"Worker": {
Replicas: Ptr(int32(1)),
abhijeet-dhumal marked this conversation as resolved.
Show resolved Hide resolved
RestartPolicy: kftov1.RestartPolicyOnFailure,
Template: corev1.PodTemplateSpec{
abhijeet-dhumal marked this conversation as resolved.
Show resolved Hide resolved
Spec: corev1.PodSpec{
Containers: []corev1.Container{
{
Name: "pytorch",
Image: baseImage,
ImagePullPolicy: corev1.PullIfNotPresent,
Command: []string{
"/bin/bash", "-c",
fmt.Sprintf(`mkdir -p /tmp/lib && export PYTHONPATH=$PYTHONPATH:/tmp/lib && \
pip install --no-cache-dir -r /mnt/files/requirements.txt --target=/tmp/lib && \
python /mnt/files/mnist.py --epochs 1 --save-model --backend %s`, backend),
},
VolumeMounts: []corev1.VolumeMount{
{
Name: config.Name,
MountPath: "/mnt/files",
},
{
Name: "tmp-volume",
MountPath: "/tmp",
},
},
},
},
Volumes: []corev1.Volume{
{
Name: config.Name,
VolumeSource: corev1.VolumeSource{
ConfigMap: &corev1.ConfigMapVolumeSource{
LocalObjectReference: corev1.LocalObjectReference{
Name: config.Name,
},
},
},
},
{
Name: "tmp-volume",
VolumeSource: corev1.VolumeSource{
EmptyDir: &corev1.EmptyDirVolumeSource{},
},
},
},
RestartPolicy: corev1.RestartPolicyOnFailure,
},
},
},
},
},
}

if useGPU {
abhijeet-dhumal marked this conversation as resolved.
Show resolved Hide resolved
// Update resource lists
tuningJob.Spec.PyTorchReplicaSpecs["Master"].Template.Spec.Containers[0].Resources = corev1.ResourceRequirements{
Limits: corev1.ResourceList{
corev1.ResourceCPU: resource.MustParse("2"),
corev1.ResourceMemory: resource.MustParse("8Gi"),
corev1.ResourceName(gpuLabel): resource.MustParse(fmt.Sprint(numGpus)),
},
}
tuningJob.Spec.PyTorchReplicaSpecs["Worker"].Template.Spec.Containers[0].Resources = corev1.ResourceRequirements{
Limits: corev1.ResourceList{
corev1.ResourceCPU: resource.MustParse("2"),
corev1.ResourceMemory: resource.MustParse("8Gi"),
corev1.ResourceName(gpuLabel): resource.MustParse(fmt.Sprint(numGpus)),
},
}

// Update tolerations
tuningJob.Spec.PyTorchReplicaSpecs["Master"].Template.Spec.Tolerations = []corev1.Toleration{
{
Key: gpuLabel,
Operator: corev1.TolerationOpExists,
},
}
tuningJob.Spec.PyTorchReplicaSpecs["Worker"].Template.Spec.Tolerations = []corev1.Toleration{
{
Key: gpuLabel,
Operator: corev1.TolerationOpExists,
},
}
}

tuningJob, err := test.Client().Kubeflow().KubeflowV1().PyTorchJobs(namespace).Create(test.Ctx(), tuningJob, metav1.CreateOptions{})
test.Expect(err).NotTo(HaveOccurred())
test.T().Logf("Created PytorchJob %s/%s successfully", tuningJob.Namespace, tuningJob.Name)

return tuningJob
}
Loading
Loading