-
Notifications
You must be signed in to change notification settings - Fork 59
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
parsing docs and creating vector database for RAG integration
- Loading branch information
1 parent
4764603
commit 9d6e0bd
Showing
1 changed file
with
71 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
from langchain_community.document_loaders import TextLoader | ||
from langchain_text_splitters import MarkdownHeaderTextSplitter | ||
import os | ||
import getpass | ||
from langchain_community.vectorstores import FAISS | ||
import faiss | ||
from langchain_community.docstore.in_memory import InMemoryDocstore | ||
from langchain_community.vectorstores import FAISS | ||
from langchain_openai import OpenAIEmbeddings | ||
import time | ||
|
||
if not os.environ.get("OPENAI_API_KEY"): | ||
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ") | ||
|
||
time_start = time.time_ns() | ||
# Step 1: Load documents with file path metadata | ||
documents_to_be_ingested = [] | ||
# Walk every file in the docs directory | ||
for root, dirs, files in os.walk("./docs"): | ||
for file in files: | ||
if file.endswith(".md"): | ||
file_path = os.path.join(root, file) | ||
try: | ||
docs = TextLoader(file_path).load() | ||
# Attach file path to metadata for each document | ||
for doc in docs: | ||
doc.metadata["file_path"] = file_path | ||
documents_to_be_ingested.extend(docs) | ||
except AttributeError as AE: | ||
print(file_path) | ||
|
||
# Step 2: Split the loaded Markdown documents by headers | ||
headers_to_split_on = [ | ||
("#", "Header 1"), | ||
("##", "Header 2"), | ||
("###", "Header 3"), | ||
] | ||
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on) | ||
split_documents = [] | ||
|
||
for doc in documents_to_be_ingested: | ||
splits = markdown_splitter.split_text(doc.page_content) | ||
# Update metadata of each split document instead of creating new ones | ||
for split_doc in splits: | ||
# Copy metadata from the original document | ||
split_doc.metadata = doc.metadata.copy() | ||
split_documents.append(split_doc) | ||
|
||
time_end_split = time.time_ns() | ||
print(f"Time to split: {(time_end_split - time_start) / 1_000_000} ms") | ||
|
||
# Step 3: Setup vector store and index chunks | ||
embeddings = OpenAIEmbeddings(model="text-embedding-3-large") | ||
index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world"))) | ||
vector_store = FAISS( | ||
embedding_function=embeddings, | ||
index=index, | ||
docstore=InMemoryDocstore(), | ||
index_to_docstore_id={}, | ||
) | ||
_ = vector_store.add_documents(documents=split_documents) | ||
|
||
time_end = time.time_ns() | ||
|
||
print(f"Time to index: {(time_end - time_end_split) / 1_000_000} ms") | ||
print(f"Total time: {(time_end - time_start) / 1_000_000} ms") | ||
|
||
#save local vector_store before (TODO) Publish to S3 | ||
vector_store.save_local("faiss_index") | ||
|
||
print("Vector store saved locally with {} documents".format(len(split_documents))) |