Skip to content

Commit

Permalink
Update ReleaseNotes with 2.6.0 (#2111)
Browse files Browse the repository at this point in the history
  • Loading branch information
KodiaqQ authored Sep 11, 2023
1 parent d54d47d commit 9d8ed96
Showing 1 changed file with 60 additions and 0 deletions.
60 changes: 60 additions & 0 deletions ReleaseNotes.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,65 @@
# Release Notes

## New in Release 2.6.0

Post-training Quantization:

- Features:
- Added `CPU_SPR` device type support.
- Added quantizers scales unification.
- Added quantization scheme for ReduceSum operation.
- Added new types (ReduceL2, ReduceSum, Maximum) to the ignored scope for `ModelType.Transformer`.
- (OpenVINO) Added SmoothQuant algorithm.
- (OpenVINO) Added ChannelAlignment algorithm.
- (OpenVINO) Added HyperparameterTuner algorithm.
- (PyTorch) Added FastBiasCorrection algorithm support.
- (OpenVINO, ONNX) Added embedding weights quantization.
- (OpenVINO, PyTorch) Added new `compress_weights` method that provides data-free [INT8 weights compression](docs/compression_algorithms/CompressWeights.md).
- Fixes:
- Fixed detection of decomposed post-processing in models.
- Multiple fixes (new patterns, bugfixes, etc.) to solve [#1936](https://github.com/openvinotoolkit/nncf/issues/1936) issue.
- Fixed model reshaping while quantization to keep original model shape.
- (OpenVINO) Added support for sequential models quanitzation.
- (OpenVINO) Fixed in-place statistics cast to support empty dimensions.
- (OpenVINO, ONNX) Fixed quantization of the MatMul operation with weights rank > 2.
- (OpenVINO, ONNX) Fixed BiasCorrection algorithm to enable [CLIP model quantization](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/228-clip-zero-shot-image-classification).
- Improvements:
- Optimized `quantize(…)` pipeline (up to 4.3x speed up in total).
- Optimized `quantize_with_accuracy_control(…)` pipelilne (up to 8x speed up for [122-quantizing-model-with-accuracy-control](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/122-quantizing-model-with-accuracy-control) notebook).
- Optimized general statistics collection (up to 1.2x speed up for ONNX backend).
- Ignored patterns separated from Fused patterns scheme (with multiple patterns addition).
- Tutorials:
- [Post-Training Optimization of Segment Anything Model](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/237-segment-anything).
- [Post-Training Optimization of CLIP Model](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/228-clip-zero-shot-image-classification).
- [Post-Training Optimization of ImageBind Model](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/239-image-bind).
- [Post-Training Optimization of Whisper Model](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/227-whisper-subtitles-generation).
- [Post-Training Optimization with accuracy control](https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/122-quantizing-model-with-accuracy-control).

Compression-aware training:

- Features:
- Added shape pruning processor for BootstrapNAS algorithm.
- Added KD loss for BootstrapNAS algorithm.
- Added `validate_scopes` parameter for NNCF configuration.
- (PyTorch) Added PyTorch 2.0 support.
- (PyTorch) Added `.strip()` option to API.
- (PyTorch) Enabled bfloat data type for quantization kernels.
- (PyTorch) Quantized models can now be `torch.jit.trace`d without calling `.strip()`.
- (PyTorch) Added support for overridden `forward` instance attribute on model objects passed into `create_compressed_model`.
- (Tensorflow) Added Tensorflow 2.12 support.
- Fixes:
- (PyTorch) Fixed padding adjustment issue in the elastic kernel to work with the different active kernel sizes.
- (PyTorch) Fixed the torch graph tracing in the case the tensors belonging to parallel edges are interleaved in the order of the tensor argument.
- (PyTorch) Fixed recurrent nodes matching (LSTM, GRU cells) condition with the strict rule to avoid adding not necessary nodes to the ignored scope.
- (PyTorch) Fixed `torch.jit.script` wrapper so that user-side handling exceptions during `torch.jit.script` invocation do not cause NNCF to be permanently disabled.
- (PyTorch, Tensorflow) Adjusted quantizer propagation algorithm to check if quantizer propagation will result in output quantization.
- (PyTorch) Added redefined `__class__` method for ProxyModule that avoids causing error while calling `.super()` in forward method.
- Deprecations/Removals:
- (PyTorch) Removed deprecated `NNCFNetwork.__getattr__`, `NNCFNetwork.get_nncf_wrapped_model` methods.
- Requirements:
- Updated PyTorch version (2.0.1).
- Updated Tensorflow version (2.12.0).

## New in Release 2.5.0

Post-training Quantization:
Expand Down

0 comments on commit 9d8ed96

Please sign in to comment.