Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lie algebras: Add root system detection #4084

Merged
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
cohomCalg_jll = "5558cf25-a90e-53b0-b813-cadaa3ae7ade"

[compat]
AbstractAlgebra = "0.42.3"
AbstractAlgebra = "0.42.5"
AlgebraicSolving = "0.5.1"
Distributed = "1.6"
GAP = "0.11.3"
Expand Down
22 changes: 22 additions & 0 deletions docs/oscar_references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1091,6 +1091,17 @@ @InProceedings{GHJ16
year = {2016}
}

@Article{GIR96,
author = {de Graaf, Willem A. and Ivanyos, Gábor and Rónyai, Lajos},
title = {Computing Cartan subalgebras of Lie algebras},
journal = {Appl. Algebra Eng. Commun. Comput.},
volume = {7},
number = {5},
pages = {339--349},
year = {1996},
doi = {10.1007/BF01293593}
}

@InCollection{GJ00,
author = {Gawrilow, Ewgenij and Joswig, Michael},
title = {polymake: a Framework for Analyzing Convex Polytopes},
Expand Down Expand Up @@ -1224,6 +1235,17 @@ @Article{Gat96
doi = {10.1007/BF01191379}
}

@Book{Gra00,
author = {de Graaf, Willem A.},
title = {Lie algebras: theory and algorithms},
series = {North-Holland Mathematical Library},
volume = {56},
publisher = {North-Holland Publishing Co., Amsterdam},
pages = {xii+393},
year = {2000},
url = {https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/56/}
}

@PhDThesis{Gro20,
author = {Gromada, Daniel},
title = {Compact matrix quantum groups and their representation categories},
Expand Down
4 changes: 2 additions & 2 deletions experimental/LieAlgebras/docs/src/ideals_and_subalgebras.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ They are used similarly in most cases.
dim(::LieAlgebraIdeal)
basis(::LieAlgebraIdeal)
basis(::LieAlgebraIdeal, ::Int)
Base.in(::LieAlgebraElem, ::LieAlgebraIdeal)
Base.in(::LieAlgebraElem{C}, ::LieAlgebraIdeal{C}) where {C<:FieldElem}
bracket(::LieAlgebraIdeal{C,LieT}, ::LieAlgebraIdeal{C,LieT}) where {C<:FieldElem,LieT<:LieAlgebraElem{C}}
normalizer(::LieAlgebra, ::LieAlgebraIdeal)
centralizer(::LieAlgebra, ::LieAlgebraIdeal)
Expand All @@ -29,7 +29,7 @@ centralizer(::LieAlgebra, ::LieAlgebraIdeal)
dim(::LieSubalgebra)
basis(::LieSubalgebra)
basis(::LieSubalgebra, ::Int)
Base.in(::LieAlgebraElem, ::LieSubalgebra)
Base.in(::LieAlgebraElem{C}, ::LieSubalgebra{C}) where {C<:FieldElem}
bracket(::LieSubalgebra{C,LieT}, ::LieSubalgebra{C,LieT}) where {C<:FieldElem,LieT<:LieAlgebraElem{C}}
normalizer(::LieAlgebra, ::LieSubalgebra)
centralizer(::LieAlgebra, ::LieSubalgebra)
Expand Down
33 changes: 19 additions & 14 deletions experimental/LieAlgebras/src/AbstractLieAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -95,22 +95,20 @@ end
has_root_system(L::AbstractLieAlgebra) = isdefined(L, :root_system)

function root_system(L::AbstractLieAlgebra)
@req has_root_system(L) "no root system known."
assure_root_system(L)
return L.root_system
end

function chevalley_basis(L::AbstractLieAlgebra)
@req has_root_system(L) "no root system known."
# TODO: once there is root system detection, this function needs to be updated to indeed return the Chevalley basis

npos = n_positive_roots(root_system(L))
b = basis(L)
# root vectors
r_plus = b[1:npos]
r_minus = b[(npos + 1):(2 * npos)]
# basis for cartan algebra
h = b[(2 * npos + 1):dim(L)]
return (r_plus, r_minus, h)
assure_root_system(L)
return L.chevalley_basis::NTuple{3,Vector{elem_type(L)}}
end

function set_root_system_and_chevalley_basis!(
L::AbstractLieAlgebra{C}, R::RootSystem, chev::NTuple{3,Vector{AbstractLieAlgebraElem{C}}}
) where {C<:FieldElem}
L.root_system = R
L.chevalley_basis = chev
end

###############################################################################
Expand Down Expand Up @@ -234,7 +232,7 @@ function lie_algebra(
@req fl "Not closed under the bracket."
struct_consts[i, j] = sparse_row(row)
end
s = map(AbstractAlgebra.obj_to_string, basis)
s = map(AbstractAlgebra.obj_to_string_wrt_times, basis)
return lie_algebra(R, struct_consts, s; check)
end

Expand Down Expand Up @@ -264,7 +262,14 @@ function lie_algebra(
]

L = lie_algebra(R, struct_consts, s; check=false)
L.root_system = rs

npos = n_positive_roots(rs)
# set Chevalley basis
r_plus = basis(L)[1:npos]
r_minus = basis(L)[(npos + 1):(2 * npos)]
h = basis(L)[(2 * npos + 1):end]
chev = (r_plus, r_minus, h)
set_root_system_and_chevalley_basis!(L, rs, chev)
return L
end

Expand Down
23 changes: 20 additions & 3 deletions experimental/LieAlgebras/src/DirectSumLieAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -135,9 +135,26 @@ end
#
###############################################################################

# The following implementation needs direct sums of root systems, which
# is not yet implemented.
# has_root_system(D::DirectSumLieAlgebra) = all(has_root_system, D.summands)
has_root_system(D::DirectSumLieAlgebra) = isdefined(D, :root_system)

function root_system(D::DirectSumLieAlgebra)
assure_root_system(D)
return D.root_system
end

function chevalley_basis(D::DirectSumLieAlgebra)
assure_root_system(D)
return D.chevalley_basis::NTuple{3,Vector{elem_type(D)}}
end

function set_root_system_and_chevalley_basis!(
D::DirectSumLieAlgebra{C},
R::RootSystem,
chev::NTuple{3,Vector{DirectSumLieAlgebraElem{C}}},
) where {C<:FieldElem}
D.root_system = R
D.chevalley_basis = chev
end

###############################################################################
#
Expand Down
Loading
Loading