Skip to content

Commit

Permalink
Adapt to the big renaming
Browse files Browse the repository at this point in the history
  • Loading branch information
fingolfin committed Feb 24, 2023
1 parent b8ff118 commit 6969b63
Show file tree
Hide file tree
Showing 62 changed files with 624 additions and 624 deletions.
6 changes: 3 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Singular"
uuid = "bcd08a7b-43d2-5ff7-b6d4-c458787f915c"
version = "0.16.1"
version = "0.17.0"

[deps]
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
Expand All @@ -18,10 +18,10 @@ lib4ti2_jll = "1493ae25-0f90-5c0e-a06c-8c5077d6d66f"
libsingular_julia_jll = "ae4fbd8f-ecdb-54f8-bbce-35570499b30e"

[compat]
AbstractAlgebra = "0.27.0"
AbstractAlgebra = "0.28.0"
BinaryWrappers = "~0.1.1"
CxxWrap = "0.11, 0.12, 0.13"
Nemo = "0.32.0"
Nemo = "0.33.0"
RandomExtensions = "0.4.2"
Singular_jll = "~403.101.500"
julia = "1.6"
Expand Down
2 changes: 1 addition & 1 deletion docs/src/GF.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ Given a finite field $R$, we also have the following coercions in addition to th
standard ones expected.

```julia
R(n::fmpz)
R(n::ZZRingElem)
```

Coerce a Flint integer value into the field.
Expand Down
16 changes: 8 additions & 8 deletions docs/src/alghom.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,10 @@ IdentityAlgebraHomomorphism(D::PolyRing)
```julia
L = FiniteField(3, 2, String("a"))

R, (x, y, z, w) = PolynomialRing(L[1], ["x", "y", "z", "w"];
R, (x, y, z, w) = polynomial_ring(L[1], ["x", "y", "z", "w"];
ordering=:negdegrevlex)

S, (a, b, c) = PolynomialRing(L[1], ["a", "b", "c"];
S, (a, b, c) = polynomial_ring(L[1], ["a", "b", "c"];
ordering=:degrevlex)

V = [a, a + b^2, b - c, c + b]
Expand All @@ -51,10 +51,10 @@ It is possible to act on polynomials and ideals via algebra homomorphisms.
**Examples**

```
R, (x, y, z, w) = PolynomialRing(Nemo.ZZ, ["x", "y", "z", "w"];
R, (x, y, z, w) = polynomial_ring(Nemo.ZZ, ["x", "y", "z", "w"];
ordering=:negdegrevlex)
S, (a, b, c) = PolynomialRing(Nemo.ZZ, ["a", "b", "c"];
S, (a, b, c) = polynomial_ring(Nemo.ZZ, ["a", "b", "c"];
ordering=:degrevlex)
V = [a, a + b^2, b - c, c + b]
Expand Down Expand Up @@ -85,10 +85,10 @@ A short command for the composition of $f$ and $g$ is `f*g`, which is the same a
**Examples**

```
R, (x, y, z, w) = PolynomialRing(QQ, ["x", "y", "z", "w"];
R, (x, y, z, w) = polynomial_ring(QQ, ["x", "y", "z", "w"];
ordering=:negdegrevlex)
S, (a, b, c) = PolynomialRing(QQ, ["a", "b", "c"];
S, (a, b, c) = polynomial_ring(QQ, ["a", "b", "c"];
ordering=:degrevlex)
V = [a, a + b^2, b - c, c + b]
Expand Down Expand Up @@ -131,10 +131,10 @@ kernel(f::SAlgHom)
**Examples**

```
R, (x, y, z, w) = PolynomialRing(QQ, ["x", "y", "z", "w"];
R, (x, y, z, w) = polynomial_ring(QQ, ["x", "y", "z", "w"];
ordering=:negdegrevlex)
S, (a, b, c) = PolynomialRing(QQ, ["a", "b", "c"];
S, (a, b, c) = polynomial_ring(QQ, ["a", "b", "c"];
ordering=:degrevlex)
I = Ideal(S, [a, a + b^2, b - c, c + b])
Expand Down
8 changes: 4 additions & 4 deletions docs/src/caller.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ specifying the base ring in the first argument.
This example illustrates passing Singular lists and providing the base ring.

```julia
julia> r0, (x, y, z, t) = PolynomialRing(QQ, ["x", "y", "z", "t"], ordering=ordering_lp());
julia> r0, (x, y, z, t) = polynomial_ring(QQ, ["x", "y", "z", "t"], ordering=ordering_lp());

julia> Singular.LibGeneral.sort([x, y])
ERROR: `intvec` may be passed in as Vector{Int}. All other vectors (`list` in Singular) must be passed in as Vector{Any} along with an explicit base ring in the first argument
Expand All @@ -55,7 +55,7 @@ julia> Singular.LibGeneral.sort(r0, Any[x, y])
This example illustrates the base ring inference:

```julia
julia> AA, (x, y, z, t) = PolynomialRing(QQ, ["x", "y", "z", "t"]);
julia> AA, (x, y, z, t) = polynomial_ring(QQ, ["x", "y", "z", "t"]);

julia> D = zero_matrix(AA, 4, 4);

Expand Down Expand Up @@ -105,7 +105,7 @@ fastHC, infRedTail, lazy, length, notBuckets, prot, qringNF, redTail, redThrough
**Examples**

```julia
julia> r, (x,y,z) = PolynomialRing(QQ, ["x", "y", "z"], ordering=ordering_ds());
julia> r, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"], ordering=ordering_ds());

julia> i = Ideal(r, [x^7+y^7+z^6,x^6+y^8+z^7,x^7+y^5+z^8,x^2*y^3+y^2*z^3+x^3*z^2,x^3*y^2+y^3*z^2+x^2*z^3]);

Expand Down Expand Up @@ -143,7 +143,7 @@ julia> gens(with_degBound(5) do; return std(i); end)
x^6 + z^7 + y^8
z^6 + x^7 + y^7

julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular Polynomial Ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> with_prot(true) do; return std(Ideal(R, x^5 - y*x + 1, y^6*x + x^2 + y^3)); end
Expand Down
40 changes: 20 additions & 20 deletions docs/src/ideal.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ empty, resulting in the zero ideal.
**Examples**

```julia
R, (x, y) = PolynomialRing(ZZ, ["x", "y"])
R, (x, y) = polynomial_ring(ZZ, ["x", "y"])

I1 = Ideal(R, x*y + 1, x^2)
I2 = Ideal(R, [x*y + 1, x^2])
Expand Down Expand Up @@ -116,7 +116,7 @@ interreduce(I::sideal{S}) where {T <: Nemo.RingElem, S <: Union{spoly{T}, splura
**Examples**

```
R, (x, y) = PolynomialRing(ZZ, ["x", "y"])
R, (x, y) = polynomial_ring(ZZ, ["x", "y"])
I = Ideal(R, x^2 + 1, x*y)
Expand All @@ -127,7 +127,7 @@ is_constant(I) == false
is_var_generated(I) == false
is_zerodim(I) == false
S, (u, v) = PolynomialRing(QQ, ["u", "v"])
S, (u, v) = polynomial_ring(QQ, ["u", "v"])
J = Ideal(S, u^2 + 1, u*v)
dimension(std(J)) == 0
```
Expand All @@ -141,7 +141,7 @@ contains{T <: AbstractAlgebra.RingElem}(::sideal{T}, ::sideal{T})
**Examples**

```julia
R, (x , y) = PolynomialRing(QQ, ["x", "y"])
R, (x , y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + 1, x*y)
J = Ideal(R, x^2 + 1)
Expand All @@ -166,7 +166,7 @@ equal(I1::sideal{S}, I2::sideal{S}) where S <: SPolyUnion
**Examples**

```julia
R, (x , y) = PolynomialRing(QQ, ["x", "y"])
R, (x , y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + 1, x*y)
J = Ideal(R, x^2 + x*y + 1, x^2 - x*y + 1)
Expand All @@ -184,7 +184,7 @@ intersection(I::sideal{S}, J::sideal{S}) where {T <: Nemo.RingElem, S <: Union{s
**Examples**

```julia
R, (x , y) = PolynomialRing(QQ, ["x", "y"])
R, (x , y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + 1, x*y)
J = Ideal(R, x^2 + x*y + 1, x^2 - x*y + 1)
Expand All @@ -205,7 +205,7 @@ quotient(I::sideal{S}, J::sideal{S}) where S <: spluralg
**Examples**

```julia
R, (x , y) = PolynomialRing(QQ, ["x", "y"])
R, (x , y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + 1, x*y)
J = Ideal(R, x + y)
Expand All @@ -222,7 +222,7 @@ lead(I::sideal{S}) where S <: SPolyUnion
**Examples**

```julia
R, (x , y) = PolynomialRing(QQ, ["x", "y"])
R, (x , y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + 1, x*y)

Expand All @@ -248,7 +248,7 @@ saturation(I::sideal{T}, J::sideal{T}) where T <: Nemo.RingElem
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, (x^2 + x*y + 1)*(2y^2+1)^3, (2y^2 + 3)*(2y^2+1)^2)
J = Ideal(R, 2y^2 + 1)
Expand Down Expand Up @@ -281,21 +281,21 @@ lift_std_syz(M::sideal{S}; complete_reduction::Bool = false) where S <: spoly
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2 + x*y + 1, 2y^2 + 3)
J = Ideal(R, 2*y^2 + 3, x^2 + x*y + 1)

A = std(I)

R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, (x*y + 1)*(2x^2*y^2 + x*y - 2) + 2x*y^2 + x, 2x*y + 1)
J = Ideal(R, x)

B = satstd(I, J)

R, (x, y, z) = PolynomialRing(QQ, ["x", "y", "z"], ordering = :lex)
R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"], ordering = :lex)
I = Ideal(R, y^3+x^2, x^2*y+x^2, x^3-x^2, z^4-x^2-y)
J = fglm(I, :degrevlex)
```
Expand All @@ -313,7 +313,7 @@ reduce(p::S, G::sideal{S}) where S <: SPolyUnion
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

f = x^2*y + 2y + 1
g = y^2 + 1
Expand All @@ -337,7 +337,7 @@ eliminate(I::sideal{S}, polys::S...) where {T <: Nemo.RingElem, S <: Union{spoly
**Examples**

```julia
R, (x, y, t) = PolynomialRing(QQ, ["x", "y", "t"])
R, (x, y, t) = polynomial_ring(QQ, ["x", "y", "t"])

I = Ideal(R, x - t^2, y - t^3)

Expand All @@ -353,7 +353,7 @@ syz(::sideal)
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2*y + 2y + 1, y^2 + 1)

Expand All @@ -379,7 +379,7 @@ sres{T <: Nemo.FieldElem}(::sideal{spoly{T}}, ::Int)
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"])
R, (x, y) = polynomial_ring(QQ, ["x", "y"])

I = Ideal(R, x^2*y + 2y + 1, y^2 + 1)

Expand All @@ -396,7 +396,7 @@ jet(I::sideal{S}, n::Int) where {T <: Nemo.RingElem, S <: Union{spoly{T}, splura
**Examples**

```julia
R, (x, y, z) = PolynomialRing(QQ, ["x", "y", "z"])
R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])

I = Ideal(R, x^5 - y^2, y^3 - x^6 + z^3)

Expand All @@ -420,7 +420,7 @@ highcorner(I::sideal{S}) where {T <: Nemo.FieldElem, S <: Union{spoly{T}, splura
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"]; ordering=:negdegrevlex)
R, (x, y) = polynomial_ring(QQ, ["x", "y"]; ordering=:negdegrevlex)

I = Ideal(R, 3*x^2 + y^3, x*y^2)

Expand All @@ -443,7 +443,7 @@ minimal_generating_set(I::sideal{S}) where S <: spoly
**Examples**

```julia
R, (x, y) = PolynomialRing(QQ, ["x", "y"]; ordering=:negdegrevlex)
R, (x, y) = polynomial_ring(QQ, ["x", "y"]; ordering=:negdegrevlex)

has_local_ordering(R) == true

Expand Down Expand Up @@ -473,7 +473,7 @@ maximal_independent_set(I::sideal{spoly{T}}; all::Bool = false) where T <: Nemo.
```

```julia
R, (x, y, u, v, w) = PolynomialRing(QQ, ["x", "y", "u", "v", "w"])
R, (x, y, u, v, w) = polynomial_ring(QQ, ["x", "y", "u", "v", "w"])

has_local_ordering(R) == true

Expand Down
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ Here is an example of using Singular.jl
```julia
julia> using Singular

julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular Polynomial Ring (QQ),(x,y),(dp(2),C), Singular.spoly{Singular.n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y + 1)
Expand Down
4 changes: 2 additions & 2 deletions docs/src/matrix.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ according to the library providing them.

Library | Element type | Parent type
----------------|-----------------|--------------------------
Singular | `smatrix{T}` | `Singular.MatrixSpace{T}`
Singular | `smatrix{T}` | `Singular.matrix_space{T}`

These types are parameterised by the type of elements in the polynomial ring $R$ over
which the matrices are defined.
Expand All @@ -46,7 +46,7 @@ The following parts of the Matrix interface from AbstractAlgebra are also implem
**Examples**

```julia
R, (x, y, u, v, w) = Singular.PolynomialRing(Singular.QQ, ["x", "y", "u", "v", "w"])
R, (x, y, u, v, w) = Singular.polynomial_ring(Singular.QQ, ["x", "y", "u", "v", "w"])

identity_matrix(R, 4)

Expand Down
6 changes: 3 additions & 3 deletions docs/src/modn.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ Integers mod $n$ are implemented via the Singular `n_Zn` type for any positive m
that can fit in a Julia `Int`.

The associated ring of integers mod $n$ is represented by a parent object which can
be constructed by a call to the `ResidueRing` constructor.
be constructed by a call to the `residue_ring` constructor.

The types of the parent objects and elements of the associated rings of integers modulo
n are given in the following table according to the library providing them.
Expand Down Expand Up @@ -44,7 +44,7 @@ addition to the standard ones expected.

```julia
R(n::n_Z)
R(n::fmpz)
R(n::ZZRingElem)
```

Coerce a Singular or Flint integer value into the ring.
Expand All @@ -54,7 +54,7 @@ Coerce a Singular or Flint integer value into the ring.
**Examples**

```
R = ResidueRing(ZZ, 26)
R = residue_ring(ZZ, 26)
a = R(5)
is_unit(a)
Expand Down
2 changes: 1 addition & 1 deletion docs/src/modp.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ addition to the standard ones expected.

```julia
R(n::n_Z)
R(n::fmpz)
R(n::ZZRingElem)
```

Coerce a Singular or Flint integer value into the field.
Expand Down
Loading

0 comments on commit 6969b63

Please sign in to comment.