Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

0 out sequence values when termination occurs before nsteps is over #4

Merged
merged 1 commit into from
Sep 18, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions treeqn/nstep_learn.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def train(self, obs, next_obs, returns, rewards, masks, actions, values):

# compute the sequences we need to get back reward predictions
action_sequences, reward_sequences, sequence_mask = build_sequences(
[torch.from_numpy(actions), torch.from_numpy(rewards)], self.nenvs, self.nsteps, self.tree_depth, return_mask=True)
[torch.from_numpy(actions), torch.from_numpy(rewards)], masks, self.nenvs, self.nsteps, self.tree_depth, return_mask=True)
action_sequences = cudify(action_sequences.long().squeeze(-1))
reward_sequences = make_variable(reward_sequences.squeeze(-1))
sequence_mask = make_variable(sequence_mask.squeeze(-1))
Expand Down Expand Up @@ -124,7 +124,7 @@ def train(self, obs, next_obs, returns, rewards, masks, actions, values):

if self.use_st_loss:
st_embeddings = tree_result["embeddings"][0]
st_targets, st_mask = build_sequences([st_embeddings.data], self.nenvs, self.nsteps, self.tree_depth, return_mask=True, offset=1)
st_targets, st_mask = build_sequences([st_embeddings.data], masks, self.nenvs, self.nsteps, self.tree_depth, return_mask=True, offset=1)
st_targets = make_variable(st_targets.view(self.batch_size, -1))
st_mask = make_variable(st_mask.view(self.batch_size, -1))

Expand Down
19 changes: 16 additions & 3 deletions treeqn/utils/treeqn_utils.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import numpy as np
import torch
import torch.nn.functional as F
from treeqn.utils.pytorch_utils import cudify
Expand All @@ -13,12 +14,23 @@ def discount_with_dones(rewards, dones, gamma):
discounted.append(r)
return discounted[::-1]

def make_seq_mask(mask):
mask = mask.numpy().astype(np.bool)
max_i = np.argmax(mask, axis=0)
if mask[max_i] == True:
mask[max_i:] = True
mask = ~np.expand_dims(mask, axis=-1) # tilde flips true and falses
return torch.from_numpy(mask.astype(np.float))

# some utilities for interpreting the trees we return
def build_sequences(sequences, nenvs, nsteps, depth, return_mask=False, offset=0):
def build_sequences(sequences, masks, nenvs, nsteps, depth, return_mask=False, offset=0):
# sequences are bs x size, containing e.g. rewards, actions, state reps
# returns bs x depth x size processed sequences with a sliding window set by 'depth', padded with 0's
# if return_mask=True also returns a mask showing where the sequences were padded
# This can be used to produce targets for tree outputs, from the true observed sequences
tmp_masks = torch.from_numpy(masks.reshape(nenvs, nsteps).astype(np.int))
tmp_masks = F.pad(tmp_masks, (0, 0, 0, depth+offset), mode="constant", value=0).data

sequences = [s.view(nenvs, nsteps, -1) for s in sequences]
if return_mask:
mask = torch.ones_like(sequences[0]).float()
Expand All @@ -29,7 +41,8 @@ def build_sequences(sequences, nenvs, nsteps, depth, return_mask=False, offset=0
proc_seq = []
for env in range(seq.shape[0]):
for t in range(nsteps):
proc_seq.append(seq[env, t+offset:t+offset+depth, :])
seq_done_mask = make_seq_mask(tmp_masks[env, t+offset:t+offset+depth])
proc_seq.append(seq[env, t+offset:t+offset+depth, :].float() * seq_done_mask.float())
proc_sequences.append(torch.stack(proc_seq))
return proc_sequences

Expand Down Expand Up @@ -101,4 +114,4 @@ def append_list(run, key, val):
if key in run.info:
run.info[key].extend(val)
else:
run.info[key] = [val]
run.info[key] = [val]