Skip to content

Commit

Permalink
refactored apes() and bias_corr()
Browse files Browse the repository at this point in the history
  • Loading branch information
pachadotdev committed Jul 23, 2024
1 parent 6cf87e1 commit b13ecb9
Show file tree
Hide file tree
Showing 33 changed files with 254 additions and 157 deletions.
2 changes: 1 addition & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -73,8 +73,8 @@ importFrom(stats,rgamma)
importFrom(stats,rlogis)
importFrom(stats,rnorm)
importFrom(stats,rpois)
importFrom(stats,sd)
importFrom(stats,terms)
importFrom(stats,var)
importFrom(stats,vcov)
importFrom(utils,combn)
useDynLib(capybara, .registration = TRUE)
3 changes: 1 addition & 2 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
* Moves all the heavy computation to C++ using Armadillo and it exports the
results to R. Previously, there were multiple data copies between R and C++
that added overhead to the computations.
* For a future release, I may rewrite the offset and APES computation to C++,
but with those the overhead is minimal.
* The previous versions returned MX by default, now it has to be specified.

# capybara 0.5.2

Expand Down
62 changes: 31 additions & 31 deletions R/bias_corr.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
#' weakly exogenous regressors, e.g. lagged outcome variables, we suggest to
#' choose a bandwidth between one and four. Note that the order of factors to
#' be partialed out is important for bandwidths larger than zero.
#' @param panel.structure a string equal to \code{"classic"} or \code{"network"}
#' @param panel_structure a string equal to \code{"classic"} or \code{"network"}
#' which determines the structure of the panel used. \code{"classic"} denotes
#' panel structures where for example the same cross-sectional units are
#' observed several times (this includes pseudo panels). \code{"network"}
Expand Down Expand Up @@ -59,28 +59,28 @@
bias_corr <- function(
object = NULL,
L = 0L,
panel.structure = c("classic", "network")) {
panel_structure = c("classic", "network")) {
# Check validity of 'object'
if (is.null(object)) {
stop("'object' has to be specified.", call. = FALSE)
} else if (!inherits(object, "feglm")) {
stop("'bias_corr' called on a non-'feglm' object.", call. = FALSE)
}

# Check validity of 'panel.structure'
panel.structure <- match.arg(panel.structure)
# Check validity of 'panel_structure'
panel_structure <- match.arg(panel_structure)

# Extract model information
beta.uncorr <- object[["coefficients"]]
beta_uncorr <- object[["coefficients"]]
control <- object[["control"]]
data <- object[["data"]]
eps <- .Machine[["double.eps"]]
family <- object[["family"]]
formula <- object[["formula"]]
lvls_k <- object[["lvls_k"]]
nms.sp <- names(beta.uncorr)
nms.sp <- names(beta_uncorr)
nt <- object[["nobs"]][["nobs"]]
k.vars <- names(lvls_k)
k_vars <- names(lvls_k)
k <- length(lvls_k)

# Check if binary choice model
Expand All @@ -100,11 +100,11 @@ bias_corr <- function(
}

# Check if provided object matches requested panel structure
if (panel.structure == "classic") {
if (panel_structure == "classic") {
if (!(k %in% c(1L, 2L))) {
stop(
paste(
"panel.structure == 'classic' expects a one- or two-way fixed",
"panel_structure == 'classic' expects a one- or two-way fixed",
"effect model."
),
call. = FALSE
Expand All @@ -114,7 +114,7 @@ bias_corr <- function(
if (!(k %in% c(2L, 3L))) {
stop(
paste(
"panel.structure == 'network' expects a two- or three-way fixed",
"panel_structure == 'network' expects a two- or three-way fixed",
"effects model."
),
call. = FALSE
Expand All @@ -129,17 +129,17 @@ bias_corr <- function(
wt <- object[["weights"]]

# Generate auxiliary list of indexes for different sub panels
k.list <- get_index_list_(k.vars, data)
k_list <- get_index_list_(k_vars, data)

# Compute derivatives and weights
eta <- object[["eta"]]
mu <- family[["linkinv"]](eta)
mu.eta <- family[["mu.eta"]](eta)
mu_eta <- family[["mu.eta"]](eta)
v <- wt * (y - mu)
w <- wt * mu.eta
w <- wt * mu_eta
z <- wt * partial_mu_eta_(eta, family, 2L)
if (family[["link"]] != "logit") {
h <- mu.eta / family[["variance"]](mu)
h <- mu_eta / family[["variance"]](mu)
v <- h * v
w <- h * w
z <- h * z
Expand All @@ -150,54 +150,54 @@ bias_corr <- function(
if (control[["keep_mx"]]) {
MX <- object[["MX"]]
} else {
MX <- center_variables_(X, w, k.list, control[["center_tol"]], 10000L)
MX <- center_variables_r_(X, w, k_list, control[["center_tol"]], 10000L)
}

# Compute bias terms for requested bias correction
if (panel.structure == "classic") {
if (panel_structure == "classic") {
# Compute \hat{B} and \hat{D}
b <- as.vector(group_sums_(MX * z, w, k.list[[1L]])) / 2.0 / nt
b <- as.vector(group_sums_(MX * z, w, k_list[[1L]])) / 2.0 / nt
if (k > 1L) {
b <- b + as.vector(group_sums_(MX * z, w, k.list[[2L]])) / 2.0 / nt
b <- b + as.vector(group_sums_(MX * z, w, k_list[[2L]])) / 2.0 / nt
}

# Compute spectral density part of \hat{B}
if (L > 0L) {
b <- (b + group_sums_spectral_(MX * w, v, w, L, k.list[[1L]])) / nt
b <- (b + group_sums_spectral_(MX * w, v, w, L, k_list[[1L]])) / nt
}
} else {
# Compute \hat{D}_{1}, \hat{D}_{2}, and \hat{B}
b <- group_sums_(MX * z, w, k.list[[1L]]) / (2.0 * nt)
b <- (b + group_sums_(MX * z, w, k.list[[2L]])) / (2.0 * nt)
b <- group_sums_(MX * z, w, k_list[[1L]]) / (2.0 * nt)
b <- (b + group_sums_(MX * z, w, k_list[[2L]])) / (2.0 * nt)
if (k > 2L) {
b <- (b + group_sums_(MX * z, w, k.list[[3L]])) / (2.0 * nt)
b <- (b + group_sums_(MX * z, w, k_list[[3L]])) / (2.0 * nt)
}

# Compute spectral density part of \hat{B}
if (k > 2L && L > 0L) {
b <- (b + group_sums_spectral_(MX * w, v, w, L, k.list[[3L]])) / nt
b <- (b + group_sums_spectral_(MX * w, v, w, L, k_list[[3L]])) / nt
}
}

# Compute bias-corrected structural parameters
beta <- beta.uncorr - solve(object[["hessian"]] / nt, b)
beta <- beta_uncorr - solve(object[["hessian"]] / nt, b)
names(beta) <- nms.sp

# Update \eta and first- and second-order derivatives
eta <- feglm_offset_(object, X %*% beta)
mu <- family[["linkinv"]](eta)
mu.eta <- family[["mu.eta"]](eta)
mu_eta <- family[["mu.eta"]](eta)
v <- wt * (y - mu)
w <- wt * mu.eta
w <- wt * mu_eta
if (family[["link"]] != "logit") {
h <- mu.eta / family[["variance"]](mu)
h <- mu_eta / family[["variance"]](mu)
v <- h * v
w <- h * w
rm(h)
}

# Update centered regressor matrix
MX <- center_variables_r_(X, w, k.list, control[["center_tol"]], 10000L)
MX <- center_variables_r_(X, w, k_list, control[["center_tol"]], 10000L)
colnames(MX) <- nms.sp

# Update hessian
Expand All @@ -209,9 +209,9 @@ bias_corr <- function(
object[["eta"]] <- eta
if (control[["keep_mx"]]) object[["MX"]] <- MX
object[["hessian"]] <- H
object[["coefficients.uncorr"]] <- beta.uncorr
object[["bias.term"]] <- b
object[["panel.structure"]] <- panel.structure
object[["coefficients_uncorr"]] <- beta_uncorr
object[["bias_term"]] <- b
object[["panel_structure"]] <- panel_structure
object[["bandwidth"]] <- L

# Add additional class to result list
Expand Down
2 changes: 1 addition & 1 deletion R/capybara-package.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
#' @importFrom MASS negative.binomial theta.ml
#' @importFrom rlang sym :=
#' @importFrom stats as.formula binomial model.matrix na.omit gaussian poisson
#' pnorm printCoefmat rgamma rlogis rnorm rpois terms vcov predict sd
#' pnorm printCoefmat rgamma rlogis rnorm rpois terms vcov predict var
#' complete.cases
#' @importFrom utils combn
#' @useDynLib capybara, .registration = TRUE
Expand Down
4 changes: 4 additions & 0 deletions R/cpp11.R
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,10 @@ feglm_fit_ <- function(beta_r, eta_r, y_r, x_r, wt_r, theta, family, control, k_
.Call(`_capybara_feglm_fit_`, beta_r, eta_r, y_r, x_r, wt_r, theta, family, control, k_list)
}

feglm_offset_fit_ <- function(eta_r, y_r, offset_r, wt_r, family, control, k_list) {
.Call(`_capybara_feglm_offset_fit_`, eta_r, y_r, offset_r, wt_r, family, control, k_list)
}

kendall_cor_ <- function(m) {
.Call(`_capybara_kendall_cor_`, m)
}
Expand Down
22 changes: 9 additions & 13 deletions R/feglm.R
Original file line number Diff line number Diff line change
Expand Up @@ -157,19 +157,15 @@ feglm <- function(
}
dimnames(fit[["hessian"]]) <- list(nms_sp, nms_sp)

# Generate result list ----
reslist <- c(
fit, list(
nobs = nobs,
lvls_k = lvls_k,
nms_fe = nms_fe,
formula = formula,
data = data,
family = family,
control = control
)
)
# Add to fit list ----
fit[["nobs"]] <- nobs
fit[["lvls_k"]] <- lvls_k
fit[["nms_fe"]] <- nms_fe
fit[["formula"]] <- formula
fit[["data"]] <- data
fit[["family"]] <- family
fit[["control"]] <- control

# Return result list ----
structure(reslist, class = "feglm")
structure(fit, class = "feglm")
}
2 changes: 1 addition & 1 deletion R/feglm_control.R
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ feglm_control <- function(
limit = 10L,
trace = FALSE,
drop_pc = TRUE,
keep_mx = TRUE) {
keep_mx = FALSE) {
# Check validity of tolerance parameters
if (dev_tol <= 0.0 || center_tol <= 0.0) {
stop(
Expand Down
54 changes: 4 additions & 50 deletions R/feglm_offset.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ feglm_offset_ <- function(object, offset) {
# Generate auxiliary list of indexes to project out the fixed effects
k_list <- get_index_list_(k_vars, data)

# Compute starting guess for \eta
# Compute starting guess for eta
if (family[["family"]] == "binomial") {
eta <- rep(family[["linkfun"]](sum(wt * (y + 0.5) / 2.0) / sum(wt)), nt)
} else if (family[["family"]] %in% c("Gamma", "inverse.gaussian")) {
Expand All @@ -36,54 +36,8 @@ feglm_offset_ <- function(object, offset) {
eta <- rep(family[["linkfun"]](sum(wt * (y + 0.1)) / sum(wt)), nt)
}

# Compute initial quantities for the maximization routine
mu <- family[["linkinv"]](eta)
dev <- sum(family[["dev.resids"]](y, mu, wt))
Myadj <- as.matrix(numeric(nt))

# Start maximization of the log-likelihood
for (iter in seq.int(iter_max)) {
# Store \eta, \beta, and deviance of the previous iteration
eta_old <- eta
dev_old <- dev

# Compute weights and dependent variable
mu.eta <- family[["mu.eta"]](eta)
w <- (wt * mu.eta^2) / family[["variance"]](mu)
yadj <- (y - mu) / mu.eta + eta - offset

# Centering dependent variable and compute \eta update
Myadj <- center_variables_r_(Myadj + yadj, w, k_list, center_tol, 10000L)
eta_upd <- yadj - drop(Myadj) + offset - eta

# Step-halving with three checks
# 1. finite deviance
# 2. valid \eta and \mu
# 3. improvement as in glm2
rho <- 1.0
for (inner.iter in seq.int(50L)) {
eta <- eta_old + rho * eta_upd
mu <- family[["linkinv"]](eta)
dev <- sum(family[["dev.resids"]](y, mu, wt))
dev.crit <- is.finite(dev)
val.crit <- family[["valideta"]](eta) && family[["validmu"]](mu)
imp.crit <- (dev - dev_old) / (0.1 + abs(dev)) <= -dev_tol
if (dev.crit && val.crit && imp.crit) break
rho <- rho / 2.0
}

# Check if step-halving failed
if (!dev.crit || !val.crit) {
stop("Inner loop failed; cannot correct step size.", call. = FALSE)
}

# Check termination condition
if (abs(dev - dev_old) / (0.1 + abs(dev)) < dev_tol) break

# Update starting guesses for acceleration
Myadj <- Myadj - yadj
}

# Return eta
eta
if (is.integer(y)) { y <- as.numeric(y) }
feglm_offset_fit_(eta, y, offset, wt, family[["family"]], control,
k_list)
}
2 changes: 1 addition & 1 deletion R/helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@ get_score_matrix_ <- function(object) {
attr(X, "dimnames") <- NULL

# Center variables
MX <- center_variables_(X, NA_real_, w, k.list, control[["center_tol"]], 10000L, FALSE)
MX <- center_variables_r_(X, w, k.list, control[["center_tol"]], 10000L)
colnames(MX) <- nms_sp
}

Expand Down
4 changes: 2 additions & 2 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Median time for the different models in the book
|:------------|-------:|-----------------:|------------:|-----------------:|----------------------------:|--------------:|
| Alpaca | 0.4s | 2.6s | 1.6s | 2.0s | 3.1s | 5.3s |
| Base R | 120.0s | 2.0m | 1380.0s | 1440.0s | 1380.0s | 1500.0s |
| **Capybara**| 0.3s | 2.2s | 1.4s | 1.7s | 2.1s | 3.9s |
| **Capybara**| 0.3s | 2.0s | 1.2s | 1.4s | 1.7s | 3.4s |
| Fixest | 0.1s | 0.5s | 0.1s | 0.2s | 0.3s | 0.5s |

Memory allocation for the same models
Expand All @@ -134,7 +134,7 @@ Memory allocation for the same models
|:------------|-------:|---------------:|-----------:|-----------------:|--------------------------:|-------------:|
|Alpaca | 307MB | 341MB | 306MB | 336MB | 395MB | 541MB |
|Base R | 3000MB | 3000MB | 12000MB | 12000GB | 12000GB | 12000MB |
|**Capybara** | 29MB | 34MB | 21MB | 24MB | 30MB | 47MB |
|**Capybara** | 27MB | 32MB | 20MB | 23MB | 29MB | 43MB |
|Fixest | 44MB | 36MB | 27MB | 32MB | 41MB | 63MB |

# Debugging
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ Analysis](https://www.wto.org/english/res_e/publications_e/advancedguide2016_e.h
| :----------- | -----: | --------------: | ----------: | ----------------: | -------------------------: | ------------: |
| Alpaca | 0.4s | 2.6s | 1.6s | 2.0s | 3.1s | 5.3s |
| Base R | 120.0s | 2.0m | 1380.0s | 1440.0s | 1380.0s | 1500.0s |
| **Capybara** | 0.3s | 2.2s | 1.4s | 1.7s | 2.1s | 3.9s |
| **Capybara** | 0.3s | 2.0s | 1.2s | 1.4s | 1.7s | 3.4s |
| Fixest | 0.1s | 0.5s | 0.1s | 0.2s | 0.3s | 0.5s |

Memory allocation for the same models
Expand All @@ -130,7 +130,7 @@ Memory allocation for the same models
| :----------- | -----: | --------------: | ----------: | ----------------: | -------------------------: | ------------: |
| Alpaca | 307MB | 341MB | 306MB | 336MB | 395MB | 541MB |
| Base R | 3000MB | 3000MB | 12000MB | 12000GB | 12000GB | 12000MB |
| **Capybara** | 29MB | 34MB | 21MB | 24MB | 30MB | 47MB |
| **Capybara** | 27MB | 32MB | 20MB | 23MB | 29MB | 43MB |
| Fixest | 44MB | 36MB | 27MB | 32MB | 41MB | 63MB |

# Debugging
Expand Down
2 changes: 1 addition & 1 deletion dev/benchmarks_tests_agtpa_capybara_only.R
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# this is not just about speed/memory, but also about obtaining the same
# slopes as in base R

library(alpaca)
library(capybara)
library(dplyr)
library(tidyr)
library(janitor)
Expand Down
18 changes: 18 additions & 0 deletions dev/test-offset.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
test_that("offset works", {
m1 <- feglm(mpg ~ wt | cyl, data = mtcars, family = poisson())
y <- predict(m1, type = "response")
o1 <- feglm_offset_(m1, y)

# m2 <- alpaca::feglm(mpg ~ wt | cyl, data = mtcars, family = poisson())
# o2 <- drop(alpaca:::feglmOffset(m2, y)
# datapasta::vector_paste(round(o2, 4))
o2 <- c(
3.018703, 3.011154, 3.056387, 3.001613, 2.979713, 2.995091, 2.976723,
3.026537, 3.027809, 2.995612, 2.995612, 2.999650, 3.006936, 3.005836,
2.977558, 2.974679, 2.975975, 3.094682, 3.062526, 3.053450, 3.029361,
2.956144, 2.958109, 2.949010, 2.948902, 3.049442, 3.041447, 3.066858,
2.964431, 2.992499, 2.955002, 3.018302
)

expect_equal(round(o1, 4), round(o2, 4))
})
Loading

0 comments on commit b13ecb9

Please sign in to comment.