forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
343 lines (293 loc) · 14.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
import struct
import inspect
from dataclasses import dataclass
from typing import Any, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
@dataclass
class ModelArgs:
# default hyperparameters for the Llama 7B model
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = 32000
hidden_dim: Optional[int] = None
multiple_of: int = 256 # MLP hidden layer size will be multiple of
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
# use flash attention or a manual implementation?
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask)
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, 'mask')
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=args.hidden_dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin):
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
last_loss: Optional[torch.Tensor]
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
h = self.dropout(h)
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = sum(p.numel() for p in self.parameters())
cfg = self.params
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.inference_mode()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
Also note this is a super inefficient version of sampling with no key/value cache.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
# forward the model to get the logits for the index in the sequence
logits = self(idx_cond)
logits = logits[:, -1, :] # crop to just the final time step
if temperature == 0.0:
# "sample" the single most likely index
_, idx_next = torch.topk(logits, k=1, dim=-1)
else:
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx