Skip to content

peterjumper/Twitter-Sentiment-Analysis

Repository files navigation

Twitter-Sentiment-Analysis

Using python to do a twitter sentiment analysis

Dataset from kaggle: Sentiment140 dataset with 1.6 million tweets

In this project, it is aim to analyze Twitter sentiment analysis Dataset using machine learning algorithms, the sentiment of tweets provided from the Sentiment140 dataset by developing a machine learning pipeline involving the use of three classifiers (Logistic Regression, Bernoulli Naive Bayes, and SVM)along with using Term Frequency- Inverse Document Frequency (TF-IDF). The performance of these classifiers is then evaluated using accuracy and F1 Scores.

For data preprocessing, we will be using Natural Language Processing’s (NLP) NLTK library.

Data view:

Picture 1

Picture 2


image-20240617153900135

image-20240617153955056

image-20240617154005546

image-20240617154022175

image-20240617154032674

image-20240617154045212

image-20240617154055695

image-20240617154104465

image-20240617154115727

image-20240617154131287

image-20240617154140278

image-20240617154154337

image-20240617154202772

image-20240617154211255

-Output:

Picture 4

Picture 5

Picture 6

Picture 7

Picture 8

zoom--

About

Using python to do a sentiment analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages