Skip to content

Commit

Permalink
DOC: Add notes on analytic formulas of price and greeks (#556)
Browse files Browse the repository at this point in the history
  • Loading branch information
simaki authored Mar 23, 2022
1 parent 2b41afa commit 5492b31
Show file tree
Hide file tree
Showing 3 changed files with 207 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ poetry.lock
docs/source/generated/
examples/output/*
!examples/output/.gitkeep
docs/notes/*.pdf

# Byte-compiled / optimized / DLL files
__pycache__/
Expand Down
113 changes: 113 additions & 0 deletions docs/notes/american_binary.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{color}
\usepackage[breaklinks,colorlinks=true]{hyperref}

\definecolor{Blue}{RGB}{0,122,255}
\hypersetup{colorlinks,breaklinks,urlcolor=Blue,linkcolor=Blue,citecolor=Blue,urlcolor=Blue}

\def\Pr{\mathop{\mathbb{P}}}
\newcommand\Ex{\mathop{\mathbb{E}}}
\newcommand\br[1]{\left(#1\right)}
\newcommand\bbr[1]{\left[#1\right]}
\newcommand\cbr[1]{\left\{#1\right\}}
\newcommand\pd[2]{\frac{\partial #1}{\partial #2}}


\begin{document}

\title{Price and greeks of American binary option}
\date{}

\maketitle


Consider an asset with spot price $S = \{S_t; 0 \leq t \leq T\}$ following geometric Brownian motion of volatility $\sigma$.

An American binary call option with strike $K$ and maturity $T$ pays off
\begin{align}
\text{Payoff}
= 1_{\max\{S_t; 0 \leq t \leq T\} \geq K} ,
\end{align}
where
$1_{\max\{S_t; 0 \leq t \leq T\} \geq K}$ is an indicator function.


\section*{Price}


Let $W = \{W_t; 0 \leq t \leq T\}$ be Brownian motion driving $S$.
We define the cumulative maximum of $W$ by $M_t = \max\{W_u; 0 \leq u \leq t\}$ and
consider $\hat M_t = M_t - \frac12 \sigma t$.
According to Corollary 7.2.2 of Ref.~\cite{shreve}, if $S_0 < K$,
\begin{align}
\Pr[\hat M_t \geq m]
= 1 - N\br{\frac{m}{\sqrt{t}} + \frac12 \sigma \sqrt{t}}
+ e^{-\sigma m} N\br{-\frac{m}{\sqrt{t}} + \frac12 \sigma \sqrt{t}} ,
\end{align}
where
$N$ is the cumulative distribution function of the normal distribution.
A condition to get the payoff of unity, $\max\{S_t; 0 \leq t \leq T\} \geq K$, is equivalent to $\hat M_T \geq - \sigma^{-1} \log(S_0 / K)$.
Therefore, the price of the American binary call option is given by
$1$ if $S_0 \geq K$ and otherwise
\begin{align}
\text{Price}
& = \Ex[1_{\max\{S_t; 0 \leq t \leq T\} \geq K}] \notag \\
& = \Pr\bbr{\hat M_T \geq - \frac{1}{\sigma}\log\br{\frac{S_0}{K}}} \notag \\
& = 1 - N\br{- \frac{\log(S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T}}
+ N\br{\frac{\log(S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T}}
\notag \\
& = N(d_2) + \frac{S_0}{K} N(d_1) ,
\end{align}
where
\begin{align}
d_1
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} + \frac12 \sigma \sqrt{T} ,
\quad
d_2
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} - \frac12 \sigma \sqrt{T} .
\end{align}


\section*{Delta}


Delta is given by
$0$ if $S_0 \geq K$ and otherwise
\begin{align}
\text{Delta}
= \frac{N^\prime(d_2)}{S_0 \sigma \sqrt{T}}
+ \frac{N(d_1)}{K}
+ \frac{N^\prime(d_1)}{K \sigma \sqrt{T}} ,
\end{align}
where
we used a derivative $\partial d_1 / \partial S_0 = \partial d_2 / \partial S_0 = 1 / (S_0 \sigma \sqrt{T})$.


\section*{Gamma}


Gamma is given by
$0$ if $S_0 \geq K$ and otherwise
\begin{align}
\text{Gamma}
& = - \frac{N^\prime(d_2)}{S_0^2 \sigma \sqrt{T}}
+ \frac{N^{\prime\prime}(d_2)}{S_0^2 \sigma^2 T}
+ \frac{N^\prime(d_1)}{S_0 K \sigma \sqrt{T}}
+ \frac{N^{\prime\prime}(d_1)}{S_0 K \sigma^2 T} \notag \\
& = - \frac{N^\prime(d_2)}{S_0^2 \sigma \sqrt{T}}
- \frac{d_2 N^\prime(d_2)}{S_0^2 \sigma^2 T}
+ \frac{N^\prime(d_1)}{S_0 K \sigma \sqrt{T}}
- \frac{N^\prime(d_1)}{S_0 K \sigma^2 T} ,
\label{eq:gamma}
\end{align}
where we used a relation $N^{\prime\prime}(x) = - x N^\prime(x)$ to show the second equality.


\begin{thebibliography}{1}
\bibitem{shreve} Shreve, S.E., 2004. Stochastic calculus for finance II: Continuous-time models (Vol. 11). New York: springer.
\end{thebibliography}


\end{document}
93 changes: 93 additions & 0 deletions docs/notes/european_binary.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{color}
\usepackage[breaklinks,colorlinks=true]{hyperref}

\definecolor{Blue}{RGB}{0,122,255}
\hypersetup{colorlinks,breaklinks,urlcolor=Blue,linkcolor=Blue,citecolor=Blue,urlcolor=Blue}

\def\Pr{\mathop{\mathbb{P}}}
\newcommand\Ex{\mathop{\mathbb{E}}}
\newcommand\br[1]{\left(#1\right)}
\newcommand\bbr[1]{\left[#1\right]}
\newcommand\cbr[1]{\left\{#1\right\}}
\newcommand\pd[2]{\frac{\partial #1}{\partial #2}}


\begin{document}

\title{Price and greeks of European binary option}
\date{}

\maketitle


Consider an asset with spot price $S = \{S_t; 0 \leq t \leq T\}$ following geometric Brownian motion of volatility $\sigma$.

A European binary call option with strike $K$ and maturity $T$ pays off
\begin{align}
\text{Payoff}_\text{Call}
= 1_{S_T \geq K} ,
\end{align}
where
$1_{S_T \geq K}$ is an indicator function.
A European binary put option with the same strike and maturity pays off
\begin{align}
\text{Payoff}_\text{Put}
= 1_{S_T \leq K} .
\end{align}



\section*{Price}


The price of the European binary call option is given by
\begin{align}
\text{Price}_\text{Call}
= \Ex[1_{S_T \geq K}] = N(d_2) ,
\end{align}
where
$N$ is the cumulative distribution function of the normal distribution and
\begin{align}
d_2
= \frac{\log (S_0 / K)}{\sigma \sqrt{T}} - \frac12 \sigma \sqrt{T} .
\end{align}

The price of a European binary put option is given by $1 - \text{Price}_\text{Call}$
because a relation $\text{Payoff}_\text{Call} + \text{Payoff}_\text{Put} = 1$ holds almost surely.


\section*{Delta}


Delta is given by
\begin{align}
\text{Delta}_\text{Call}
= \frac{N^\prime(d_2)}{S_0 \sigma \sqrt{T}} ,
\end{align}
where
we used a derivative $\partial d_2 / \partial S_0 = 1 / (S_0 \sigma \sqrt{T})$.

Delta of a European binary put option is $\text{Delta}_\text{Put} = - \text{Delta}_\text{Call}$.


\section*{Gamma}


Gamma of the European binary option is given by
\begin{align}
\text{Gamma}
= \frac{N^{\prime\prime}(d_2)}{S_0^2 \sigma^2 T}
- \frac{N^{\prime}(d_2)}{S_0^2 \sigma \sqrt{T}}
= - \frac{N^{\prime}(d_2)}{S_0^2 \sigma \sqrt{T}}
\br{\frac{d_2}{\sigma \sqrt{T}} + 1} ,
\label{eq:gamma}
\end{align}
where we used a relation $N^{\prime\prime}(x) = - x N^\prime(x)$ to show the second equality.

Gamma of a European binary put option is $\text{Gamma}_\text{Put} = - \text{Gamma}_\text{Call}$.


\end{document}

0 comments on commit 5492b31

Please sign in to comment.