Skip to content

Commit

Permalink
Merge pull request #112 from TheCoreTeam/symmetric_support
Browse files Browse the repository at this point in the history
feat(symmetric): support SPD GPU
  • Loading branch information
pghysels authored Mar 12, 2024
2 parents f91f069 + 01592f6 commit 08168ef
Show file tree
Hide file tree
Showing 26 changed files with 3,045 additions and 9 deletions.
6 changes: 6 additions & 0 deletions examples/sparse/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@ add_executable(testPoisson2d EXCLUDE_FROM_ALL testPoisson2d.cpp)
add_executable(testMMdouble EXCLUDE_FROM_ALL testMMdouble.cpp)
add_executable(testPoisson3d EXCLUDE_FROM_ALL testPoisson3d.cpp)
add_executable(testMixedPrecision EXCLUDE_FROM_ALL testMixedPrecision.cpp)
add_executable(testMixedPrecisionSymmetricPositiveDefinite EXCLUDE_FROM_ALL testMixedPrecisionSymmetricPositiveDefinite.cpp)
add_executable(testSymmetricPositiveDefinite EXCLUDE_FROM_ALL testSymmetricPositiveDefinite.cpp)
add_executable(sexample EXCLUDE_FROM_ALL sexample.c)
add_executable(dexample EXCLUDE_FROM_ALL dexample.c)
add_executable(cexample EXCLUDE_FROM_ALL cexample.c)
Expand All @@ -13,6 +15,8 @@ target_link_libraries(testPoisson2d strumpack)
target_link_libraries(testMMdouble strumpack)
target_link_libraries(testPoisson3d strumpack)
target_link_libraries(testMixedPrecision strumpack)
target_link_libraries(testMixedPrecisionSymmetricPositiveDefinite strumpack)
target_link_libraries(testSymmetricPositiveDefinite strumpack)
target_link_libraries(sexample strumpack)
target_link_libraries(dexample strumpack)
target_link_libraries(cexample strumpack)
Expand All @@ -24,6 +28,8 @@ add_dependencies(examples
testMMdouble
testPoisson3d
testMixedPrecision
testMixedPrecisionSymmetricPositiveDefinite
testSymmetricPositiveDefinite
sexample
dexample
cexample
Expand Down
181 changes: 181 additions & 0 deletions examples/sparse/testMixedPrecisionSymmetricPositiveDefinite.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
//
// Created by tingxuan on 2023/12/24.
//
/*
* STRUMPACK -- STRUctured Matrices PACKage, Copyright (c) 2014, The
* Regents of the University of California, through Lawrence Berkeley
* National Laboratory (subject to receipt of any required approvals
* from the U.S. Dept. of Energy). All rights reserved.
*
* If you have questions about your rights to use or distribute this
* software, please contact Berkeley Lab's Technology Transfer
* Department at [email protected].
*
* NOTICE. This software is owned by the U.S. Department of Energy. As
* such, the U.S. Government has been granted for itself and others
* acting on its behalf a paid-up, nonexclusive, irrevocable,
* worldwide license in the Software to reproduce, prepare derivative
* works, and perform publicly and display publicly. Beginning five
* (5) years after the date permission to assert copyright is obtained
* from the U.S. Department of Energy, and subject to any subsequent
* five (5) year renewals, the U.S. Government is granted for itself
* and others acting on its behalf a paid-up, nonexclusive,
* irrevocable, worldwide license in the Software to reproduce,
* prepare derivative works, distribute copies to the public, perform
* publicly and display publicly, and to permit others to do so.
*
* Developers: Pieter Ghysels, Francois-Henry Rouet, Xiaoye S. Li.
* (Lawrence Berkeley National Lab, Computational Research
* Division).
*
*/
#include <iostream>
#include <type_traits>
#include <random>
#include <cmath>

#include "StrumpackSparseSolver.hpp"
#include "StrumpackSparseSolverMixedPrecision.hpp"
#include "sparse/CSRMatrix.hpp"

using namespace strumpack;


/**
* Test the STRUMPACK sparse solver, and the mixed precision sparse
* solver.
*
* For working_t == float, the mixed precision solver will
* compute the factorization in single precision, but do iterative
* refinement in double precision to give a more accurate results than
* the standard single precision solver.
*
* For working_t == double, the mixed precision solver will compute
* the factorization in single precision and perform the iterative
* refinement in double precision. If the problem is not too
* ill-conditioned, this should be about as accurate, and about twice
* as fast as the standard double precision solver. The speedup
* depends on the relative cost of the sparse triangular solver phase
* compared to the sparse LU factorization phase.
*
* TODO long double
*/
template<typename working_t>
void test(CSRMatrix<working_t,int>& A,
DenseMatrix<working_t>& b, DenseMatrix<working_t>& x_exact,
int argc, char* argv[]) {
int m = b.cols(); // number of right-hand sides
auto N = A.size();
DenseMatrix<working_t> x(N, m);

std::cout << std::endl;
std::cout << "###############################################" << std::endl;
std::cout << "### Working precision: " <<
(std::is_same<float,working_t>::value ? "single" : "double")
<< " #################" << std::endl;
std::cout << "###############################################" << std::endl;

{
std::cout << std::endl;
std::cout << "### MIXED Precision Solver ####################" << std::endl;

SparseSolverMixedPrecision<float,double,int> spss;
/** options for the outer solver */
spss.options().set_Krylov_solver(KrylovSolver::REFINE);
// spss.options().set_Krylov_solver(KrylovSolver::PREC_BICGSTAB);
// spss.options().set_Krylov_solver(KrylovSolver::PREC_GMRES);
spss.options().set_rel_tol(1e-14);
spss.options().set_from_command_line(argc, argv);

/** options for the inner solver */
spss.solver().options().set_Krylov_solver(KrylovSolver::DIRECT);
spss.solver().options().set_from_command_line(argc, argv);
spss.options().set_matching(strumpack::MatchingJob::NONE);
spss.solver().options().set_matching(strumpack::MatchingJob::NONE);
spss.options().enable_symmetric();
spss.options().enable_positive_definite();
spss.solver().options().enable_symmetric();
spss.solver().options().enable_positive_definite();

spss.set_matrix(A);
spss.reorder();
spss.factor();
spss.solve(b, x);

std::cout << "# COMPONENTWISE SCALED RESIDUAL = "
<< A.max_scaled_residual(x.data(), b.data()) << std::endl;
strumpack::blas::axpy(N, -1., x_exact.data(), 1, x.data(), 1);
auto nrm_error = strumpack::blas::nrm2(N, x.data(), 1);
auto nrm_x_exact = strumpack::blas::nrm2(N, x_exact.data(), 1);
std::cout << "# RELATIVE ERROR = " << (nrm_error/nrm_x_exact) << std::endl;
}

std::cout << std::endl;
}


int main(int argc, char* argv[]) {

std::cout << "long double size in bytes: "
<< sizeof(long double) << " "
<< std::endl;

std::string f;
if (argc > 1) f = std::string(argv[1]);

CSRMatrix<double,int> A_d;
A_d.read_matrix_market(f);
auto A_f = cast_matrix<double,int,float>(A_d);

int N = A_d.size();
int m = 1; // nr of RHSs
DenseMatrix<double> b_d(N, m), x_true_d(N, m);


// set the exact solution, see:
// http://www.netlib.org/lapack/lawnspdf/lawn165.pdf
// page 20
std::default_random_engine gen;
std::uniform_real_distribution<double> dist(0., std::sqrt(24.));
for (int j=0; j<m; j++) {
// step 4, use a different tau for each RHS
double tau = std::pow(dist(gen), 2.);
for (int i=0; i<N; i++)
// step 4c
x_true_d(i, j) = std::pow(tau, -double(i)/(N-1));
}

// step 6, but in double, not double-double
A_d.spmv(x_true_d, b_d);
{
DenseMatrix<double> x(N, m);
// step 7, but in double, not double-double
SparseSolver<double,int> spss;
// SparseSolverMixedPrecision<double,long double,int> spss;
spss.options().enable_symmetric();
spss.options().enable_positive_definite();
spss.set_matrix(A_d);
spss.options().set_matching(strumpack::MatchingJob::NONE);
spss.options().set_Krylov_solver(KrylovSolver::DIRECT);
spss.solve(b_d, x);


std::cout << "# COMPONENTWISE SCALED RESIDUAL = "
<< A_d.max_scaled_residual(x.data(), b_d.data()) << std::endl;
strumpack::blas::axpy(N, -1., x_true_d.data(), 1, x.data(), 1);
auto nrm_error = strumpack::blas::nrm2(N, x.data(), 1);
auto nrm_x_exact = strumpack::blas::nrm2(N, x_true_d.data(), 1);
std::cout << "# RELATIVE ERROR = " << (nrm_error/nrm_x_exact) << std::endl;

}

// cast RHS and true solution to single precision
DenseMatrix<float> b_f(N, m), x_true_f(N, m);
copy(x_true_d, x_true_f);
copy(b_d, b_f);

test<double>(A_d, b_d, x_true_d, argc, argv);
test<float >(A_f, b_f, x_true_f, argc, argv);

return 0;
}
181 changes: 181 additions & 0 deletions examples/sparse/testSymmetricPositiveDefinite.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
//
// Created by tingxuan on 2023/12/24.
//
/*
* STRUMPACK -- STRUctured Matrices PACKage, Copyright (c) 2014, The
* Regents of the University of California, through Lawrence Berkeley
* National Laboratory (subject to receipt of any required approvals
* from the U.S. Dept. of Energy). All rights reserved.
*
* If you have questions about your rights to use or distribute this
* software, please contact Berkeley Lab's Technology Transfer
* Department at [email protected].
*
* NOTICE. This software is owned by the U.S. Department of Energy. As
* such, the U.S. Government has been granted for itself and others
* acting on its behalf a paid-up, nonexclusive, irrevocable,
* worldwide license in the Software to reproduce, prepare derivative
* works, and perform publicly and display publicly. Beginning five
* (5) years after the date permission to assert copyright is obtained
* from the U.S. Department of Energy, and subject to any subsequent
* five (5) year renewals, the U.S. Government is granted for itself
* and others acting on its behalf a paid-up, nonexclusive,
* irrevocable, worldwide license in the Software to reproduce,
* prepare derivative works, distribute copies to the public, perform
* publicly and display publicly, and to permit others to do so.
*
* Developers: Pieter Ghysels, Francois-Henry Rouet, Xiaoye S. Li.
* (Lawrence Berkeley National Lab, Computational Research
* Division).
*
*/
#include <iostream>
#include <type_traits>
#include <random>
#include <cmath>

#include "StrumpackSparseSolver.hpp"
#include "StrumpackSparseSolverMixedPrecision.hpp"
#include "sparse/CSRMatrix.hpp"

using namespace strumpack;


/**
* Test the STRUMPACK sparse solver, and the mixed precision sparse
* solver.
*
* For working_t == float, the mixed precision solver will
* compute the factorization in single precision, but do iterative
* refinement in double precision to give a more accurate results than
* the standard single precision solver.
*
* For working_t == double, the mixed precision solver will compute
* the factorization in single precision and perform the iterative
* refinement in double precision. If the problem is not too
* ill-conditioned, this should be about as accurate, and about twice
* as fast as the standard double precision solver. The speedup
* depends on the relative cost of the sparse triangular solver phase
* compared to the sparse LU factorization phase.
*
* TODO long double
*/
template<typename working_t>
void test(CSRMatrix<working_t,int>& A,
DenseMatrix<working_t>& b, DenseMatrix<working_t>& x_exact,
int argc, char* argv[]) {
int m = b.cols(); // number of right-hand sides
auto N = A.size();
DenseMatrix<working_t> x(N, m);

std::cout << std::endl;
std::cout << "###############################################" << std::endl;
std::cout << "### Working precision: " <<
(std::is_same<float,working_t>::value ? "single" : "double")
<< " #################" << std::endl;
std::cout << "###############################################" << std::endl;

{
std::cout << std::endl;
std::cout << "### MIXED Precision Solver ####################" << std::endl;

SparseSolverMixedPrecision<float,double,int> spss;
/** options for the outer solver */
spss.options().set_Krylov_solver(KrylovSolver::REFINE);
// spss.options().set_Krylov_solver(KrylovSolver::PREC_BICGSTAB);
// spss.options().set_Krylov_solver(KrylovSolver::PREC_GMRES);
spss.options().set_rel_tol(1e-14);
spss.options().set_from_command_line(argc, argv);

/** options for the inner solver */
spss.solver().options().set_Krylov_solver(KrylovSolver::DIRECT);
spss.solver().options().set_from_command_line(argc, argv);
spss.options().set_matching(strumpack::MatchingJob::NONE);
spss.solver().options().set_matching(strumpack::MatchingJob::NONE);
spss.options().enable_symmetric();
spss.options().enable_positive_definite();
spss.solver().options().enable_symmetric();
spss.solver().options().enable_positive_definite();

spss.set_matrix(A);
spss.reorder();
spss.factor();
spss.solve(b, x);

std::cout << "# COMPONENTWISE SCALED RESIDUAL = "
<< A.max_scaled_residual(x.data(), b.data()) << std::endl;
strumpack::blas::axpy(N, -1., x_exact.data(), 1, x.data(), 1);
auto nrm_error = strumpack::blas::nrm2(N, x.data(), 1);
auto nrm_x_exact = strumpack::blas::nrm2(N, x_exact.data(), 1);
std::cout << "# RELATIVE ERROR = " << (nrm_error/nrm_x_exact) << std::endl;
}

std::cout << std::endl;
}


int main(int argc, char* argv[]) {

CSRMatrix<double,int> A_d;
if(argc > 1){
A_d.read_matrix_market(argv[1]);
}else{
int n =3;
int ptr[4] = {0,2,3,5};
int Index[5] = {0,2,1,0,2};
double val[5] = {2.1,1,3.5,1,5.2};
A_d = CSRMatrix<double,int>(n, ptr, Index, val);
}


int N = A_d.size();
int m = 1; // nr of RHSs
DenseMatrix<double> b_d(N, m), x_true_d(N, m);


// set the exact solution, see:
// http://www.netlib.org/lapack/lawnspdf/lawn165.pdf
// page 20
std::default_random_engine gen;
std::uniform_real_distribution<double> dist(0., std::sqrt(24.));
for (int j=0; j<m; j++) {
// step 4, use a different tau for each RHS
double tau = std::pow(dist(gen), 2.);
for (int i=0; i<N; i++)
// step 4c
x_true_d(i, j) = std::pow(tau, -double(i)/(N-1));
}

// step 6, but in double, not double-double
A_d.spmv(x_true_d, b_d);
{
DenseMatrix<double> x(N, m);
// step 7, but in double, not double-double
SparseSolver<double,int> spss;
// SparseSolverMixedPrecision<double,long double,int> spss;
spss.options().enable_symmetric();
spss.options().enable_positive_definite();
spss.set_matrix(A_d);
spss.options().set_matching(strumpack::MatchingJob::NONE);
spss.options().set_Krylov_solver(KrylovSolver::DIRECT);
spss.solve(b_d, x);

std::cout<<"x_true_d=";
for(int r=0; r<N; r++){
for(int c=0; c<m; c++){
std::cout<<x_true_d.data()[r+m*c];
}
std::cout<<std::endl;
}

std::cout<<"x_solve=";
for(int r=0; r<N; r++){
for(int c=0; c<m; c++){
std::cout<<x.data()[r+m*c];
}
std::cout<<std::endl;
}

}
return 0;
}
Loading

0 comments on commit 08168ef

Please sign in to comment.