This repository contains the code for the novelty detection project using the Curiosity Mastcam images.
- Python 3.11+
Install the required packages by running:
pip install -r requirements_linux_cpu.txt
or
pip install -r requirements_linux_gpu.txt
Example usage (run from the root directory):
python3 main.py --lr 1e-6 --model VAE --epochs 1 --device cuda
Arguments:
--model
- model to use (one of GAN, VAE, FLOW)--epochs
- number of epochs to train--lr
- learning rate--device
- device to use (eg.cpu or cuda)
Example usage (run from the root directory):
python3 ./main_test.py --model VAE --batch 1 --device cpu --load ./vae/model/vae_model-250-epoch.pth --save results/vae
Arguments:
--model
- model to use (one of GAN, VAE, FLOW)--batch
- batch size--device
- device to use (eg.cpu or cuda)--load
- path to the model to load--save
- path to save the results
Multispectral images of Mars taken by the Curiosity rover. The dataset is divided into four parts: train_typical, validation_typical, test_typical, and test_novel.
Source:
To download the dataset run:
cd dataset
curl -O https://zenodo.org/records/3732485/files/test_novel.zip
curl -O https://zenodo.org/records/3732485/files/test_typical.zip
curl -O https://zenodo.org/records/3732485/files/train_typical.zip
curl -O https://zenodo.org/records/3732485/files/validation_typical.zip
unzip test_novel.zip
unzip test_typical.zip
unzip train_typical.zip
unzip validation_typical.zip