Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add emission class for Categorical distributions #77

Merged
merged 4 commits into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions cxx/emissions/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,16 @@ cc_library(
deps = [":base"],
)

cc_library(
name = "categorical",
srcs = ["categorical.hh"],
visibility = ["//:__subpackages__"],
deps = [
":base",
"//distributions:dirichlet_categorical",
],
)

cc_library(
name = "gaussian",
srcs = ["gaussian.hh"],
Expand Down Expand Up @@ -92,6 +102,15 @@ cc_test(
],
)

cc_test(
name = "categorical_test",
srcs = ["categorical_test.cc"],
deps = [
":categorical",
"@boost//:algorithm",
"@boost//:test",
],
)
cc_test(
name = "gaussian_test",
srcs = ["gaussian_test.cc"],
Expand Down
81 changes: 81 additions & 0 deletions cxx/emissions/categorical.hh
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#pragma once

#include <cassert>
#include <limits>
#include <utility>

#include "distributions/dirichlet_categorical.hh"
#include "emissions/base.hh"

// A "bigram" emission model that tracks separate emission distributions per
// clean categorical state.
class CategoricalEmission : public Emission<int> {
public:
mutable std::vector<DirichletCategorical> emission_dists;

CategoricalEmission(int num_states) {
emission_dists.reserve(num_states);
for (int i = 0; i < num_states; ++i) {
emission_dists.emplace_back(num_states);
}
};

void incorporate(const std::pair<int, int>& x) {
++N;
emission_dists[x.first].incorporate(x.second);
}

void unincorporate(const std::pair<int, int>& x) {
--N;
emission_dists[x.first].unincorporate(x.second);
}

double logp(const std::pair<int, int>& x) const {
double lp;
for (size_t i = 0; i < emission_dists.size(); ++i) {
if (std::cmp_equal(i, x.first)) {
lp += emission_dists[i].logp(x.second);
} else {
lp += emission_dists[i].logp_score();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you explain this formula for logp? I thought it should be p(x.second | x.first), where x.first is clean and x.second is noisy, such that the conditional probability in the if branch was all we needed. Also, to the extent that this is like a bigram model, the bigram logp doesn't contain logp_score terms for the rest of the categories.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are entirely correct; this should only contain the conditional probability. Fixed.

}
}
return lp;
}

double logp_score() const {
double lp = 0.0;
for (const auto& e : emission_dists) {
lp += e.logp_score();
}
return lp;
}

void transition_hyperparameters(std::mt19937* prng) {
for (auto& e : emission_dists) {
e.transition_hyperparameters(prng);
}
}

int sample_corrupted(const int& clean, std::mt19937* prng) {
return emission_dists[clean].sample(prng);
}

int propose_clean(const std::vector<int>& corrupted,
std::mt19937* unused_prng) {
// Brute force; compute log prob over all possible clean states.
int best_clean;
double best_clean_logp = std::numeric_limits<double>::lowest();
for (size_t i = 0; i < emission_dists.size(); ++i) {
double lp = 0.0;
for (const auto& c : corrupted) {
lp += emission_dists[i].logp(c);
}
if (lp > best_clean_logp) {
best_clean = i;
best_clean_logp = lp;
}
}
return best_clean;
}

};
36 changes: 36 additions & 0 deletions cxx/emissions/categorical_test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
// Apache License, Version 2.0, refer to LICENSE.txt

#define BOOST_TEST_MODULE test CategoricalEmission

#include "emissions/categorical.hh"

#include <boost/test/included/unit_test.hpp>
#include <random>
namespace tt = boost::test_tools;

BOOST_AUTO_TEST_CASE(test_simple) {
CategoricalEmission ce(5);

BOOST_TEST(ce.logp_score() == 0.0);
BOOST_TEST(ce.N == 0);
ce.incorporate(std::make_pair<int, int>(0, 2));
BOOST_TEST(ce.N == 1);
BOOST_TEST(ce.logp_score() == -1.6094379124341001, tt::tolerance(1e-6));
ce.unincorporate(std::make_pair<int, int>(0, 2));
BOOST_TEST(ce.N == 0);
ce.incorporate(std::make_pair<int, int>(3, 3));
ce.incorporate(std::make_pair<int, int>(4, 4));
BOOST_TEST(ce.N == 2);

BOOST_TEST(ce.logp(std::make_pair<int, int>(2, 2)) == -4.8283137373023006,
tt::tolerance(1e-6));

std::mt19937 prng;
int s = ce.sample_corrupted(1, &prng);
BOOST_TEST(s < 5);
BOOST_TEST(s >= 0);

int clean = ce.propose_clean({1, 1, 3, 4}, &prng);
BOOST_TEST(clean < 5);
BOOST_TEST(clean >= 0);
}