Skip to content

First Kaggle competition. Please read the 'readme' doc for information about this problem.

Notifications You must be signed in to change notification settings

punitagrawal32/Kaggle_Titanic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Kaggle_Titanic

First Kaggle competition. Please read this to get insight about the problem.

OVERVIEW: The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships. One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class. In this challenge, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy.

DATA: The data has been split into two groups: training set (train.csv) test set (test.csv) The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features. The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

Variable Definition Key: survival Survival 0 = No, 1 = Yes pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd sex Sex Age Age in years sibsp # of siblings / spouses aboard the Titanic parch # of parents / children aboard the Titanic ticket Ticket number fare Passenger fare cabin Cabin number embarked Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

VARIABLE NOTES: pclass: A proxy for socio-economic status (SES) 1st = Upper 2nd = Middle 3rd = Lower age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5 sibsp: The dataset defines family relations in this way... Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored) parch: The dataset defines family relations in this way... Parent = mother, father Child = daughter, son, stepdaughter, stepson Some children travelled only with a nanny, therefore parch=0 for them.

About

First Kaggle competition. Please read the 'readme' doc for information about this problem.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages