Skip to content

Commit

Permalink
Performance fix (#410)
Browse files Browse the repository at this point in the history
* Improved NWP loading

* performance fix and black complaince
  • Loading branch information
gjm174 authored Aug 1, 2024
1 parent 8bec82e commit 917c83b
Show file tree
Hide file tree
Showing 3 changed files with 26 additions and 31 deletions.
20 changes: 10 additions & 10 deletions pysteps/blending/steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,8 @@
from pysteps.postprocessing import probmatching
from pysteps.timeseries import autoregression, correlation

from copy import deepcopy

try:
import dask

Expand Down Expand Up @@ -710,15 +712,11 @@ def forecast(
# 5. Repeat precip_cascade for n ensemble members
# First, discard all except the p-1 last cascades because they are not needed
# for the AR(p) model
precip_cascade = [
precip_cascade[i][-ar_order:] for i in range(n_cascade_levels)
]

precip_cascade = [
[precip_cascade[j].copy() for j in range(n_cascade_levels)]
for i in range(n_ens_members)
]
precip_cascade = np.stack(precip_cascade)
precip_cascade = np.stack(
[[precip_cascade[i][-ar_order:].copy() for i in range(n_cascade_levels)]]
* n_ens_members
)

# 6. Initialize all the random generators and prepare for the forecast loop
randgen_prec, vps, generate_vel_noise = _init_random_generators(
Expand Down Expand Up @@ -781,8 +779,10 @@ def forecast(
starttime_mainloop = time.time()

extrap_kwargs["return_displacement"] = True
forecast_prev = precip_cascade
noise_prev = noise_cascade

forecast_prev = deepcopy(precip_cascade)
noise_prev = deepcopy(noise_cascade)

t_prev = [0.0 for j in range(n_ens_members)]
t_total = [0.0 for j in range(n_ens_members)]

Expand Down
35 changes: 15 additions & 20 deletions pysteps/blending/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -475,11 +475,11 @@ def load_NWP(input_nc_path_decomp, input_path_velocities, start_time, n_timestep
ncf_decomp = netCDF4.Dataset(input_nc_path_decomp, "r", format="NETCDF4")
velocities = np.load(input_path_velocities)

# Initialise the decomposition dictionary
decomp_dict = dict()
decomp_dict["domain"] = ncf_decomp.domain
decomp_dict["normalized"] = bool(ncf_decomp.normalized)
decomp_dict["compact_output"] = bool(ncf_decomp.compact_output)
decomp_dict = {
"domain": ncf_decomp.domain,
"normalized": bool(ncf_decomp.normalized),
"compact_output": bool(ncf_decomp.compact_output),
}

# Convert the start time and the timestep to datetime64 and timedelta64 type
zero_time = np.datetime64("1970-01-01T00:00:00", "ns")
Expand Down Expand Up @@ -515,23 +515,18 @@ def load_NWP(input_nc_path_decomp, input_path_velocities, start_time, n_timestep
# Initialise the list of dictionaries which will serve as the output (cf: the STEPS function)
R_d = list()

for i in range(start_i, end_i):
decomp_dict_ = decomp_dict.copy()
pr_decomposed = ncf_decomp.variables["pr_decomposed"][start_i:end_i, :, :, :]
means = ncf_decomp.variables["means"][start_i:end_i, :]
stds = ncf_decomp.variables["stds"][start_i:end_i, :]

# Obtain the decomposed cascades for time step i
cascade_levels = ncf_decomp.variables["pr_decomposed"][i, :, :, :]
# Obtain the mean values
means = ncf_decomp.variables["means"][i, :]
# Obtain de standard deviations
stds = ncf_decomp.variables["stds"][i, :]

# Save the values in the dictionary as normal arrays with the filled method
decomp_dict_["cascade_levels"] = np.ma.filled(cascade_levels, fill_value=np.nan)
decomp_dict_["means"] = np.ma.filled(means, fill_value=np.nan)
decomp_dict_["stds"] = np.ma.filled(stds, fill_value=np.nan)
for i in range(n_timesteps + 1):
decomp_dict["cascade_levels"] = np.ma.filled(
pr_decomposed[i], fill_value=np.nan
)
decomp_dict["means"] = np.ma.filled(means[i], fill_value=np.nan)
decomp_dict["stds"] = np.ma.filled(stds[i], fill_value=np.nan)

# Append the output list
R_d.append(decomp_dict_)
R_d.append(decomp_dict.copy())

ncf_decomp.close()
return R_d, uv
Expand Down
2 changes: 1 addition & 1 deletion pysteps/extrapolation/semilagrangian.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ def extrapolate(

if xy_coords is None:
x_values, y_values = np.meshgrid(
np.arange(velocity.shape[2]), np.arange(velocity.shape[1])
np.arange(velocity.shape[2]), np.arange(velocity.shape[1]), copy=False
)

xy_coords = np.stack([x_values, y_values])
Expand Down

0 comments on commit 917c83b

Please sign in to comment.