Skip to content

Commit

Permalink
Added member and time dimension (#432)
Browse files Browse the repository at this point in the history
  • Loading branch information
gjm174 authored and mats-knmi committed Sep 23, 2024
1 parent e7c081c commit c2ae9db
Showing 1 changed file with 65 additions and 10 deletions.
75 changes: 65 additions & 10 deletions pysteps/xarray_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@ def convert_input_to_xarray_dataset(
precip: np.ndarray,
quality: np.ndarray | None,
metadata: dict[str, str | float | None],
startdate: datetime | None = None,
) -> xr.Dataset:
"""
Read a precip, quality, metadata tuple as returned by the importers
Expand All @@ -99,6 +100,8 @@ def convert_input_to_xarray_dataset(
metadata: dict
Metadata dictionary containing the attributes described in the
documentation of :py:mod:`pysteps.io.importers`.
startdate: datetime, None
Datetime object containing the start date and time for the nowcast
Returns
-------
Expand All @@ -107,7 +110,31 @@ def convert_input_to_xarray_dataset(
"""
var_name, attrs = cf_parameters_from_unit(metadata["unit"])
h, w = precip.shape

dims = None
timesteps = None
ens_number = None

if precip.ndim == 4:
ens_number, timesteps, h, w = precip.shape
dims = ["ens_number", "time", "y", "x"]

if startdate is None:
raise Exception("startdate missing")

elif precip.ndim == 3:
timesteps, h, w = precip.shape
dims = ["time", "y", "x"]

if startdate is None:
raise Exception("startdate missing")

elif precip.ndim == 2:
h, w = precip.shape
dims = ["y", "x"]
else:
raise Exception(f"Precip field shape: {precip.shape} not supported")

x_r = np.linspace(metadata["x1"], metadata["x2"], w + 1)[:-1]
x_r += 0.5 * (x_r[1] - x_r[0])
y_r = np.linspace(metadata["y1"], metadata["y2"], h + 1)[:-1]
Expand Down Expand Up @@ -142,25 +169,33 @@ def convert_input_to_xarray_dataset(

data_vars = {
var_name: (
["y", "x"],
dims,
precip,
{
"units": attrs["units"],
"standard_name": attrs["standard_name"],
"long_name": attrs["long_name"],
"grid_mapping": "projection",
"transform": metadata["transform"],
"accutime": metadata["accutime"],
"threshold": metadata["threshold"],
"zerovalue": metadata["zerovalue"],
"zr_a": metadata["zr_a"],
"zr_b": metadata["zr_b"],
},
)
}

metadata_keys = [
"transform",
"accutime",
"threshold",
"zerovalue",
"zr_a",
"zr_b",
]

for metadata_field in metadata_keys:
if metadata_field in metadata:
data_vars[var_name][2][metadata_field] = metadata[metadata_field]

if quality is not None:
data_vars["quality"] = (
["y", "x"],
dims,
quality,
{
"units": "1",
Expand Down Expand Up @@ -210,6 +245,26 @@ def convert_input_to_xarray_dataset(
},
),
}

if ens_number is not None:
coords["ens_number"] = (
["ens_number"],
list(range(1, ens_number + 1, 1)),
{
"long_name": "ensemble member",
"standard_name": "realization",
"units": "",
},
)

if timesteps is not None:
startdate_str = datetime.strftime(startdate, "%Y-%m-%d %H:%M:%S")

coords["time"] = (
["time"],
list(range(1, timesteps + 1, 1)),
{"long_name": "forecast time", "units": "seconds since %s" % startdate_str},
)
if grid_mapping_var_name is not None:
coords[grid_mapping_name] = (
[],
Expand All @@ -223,7 +278,7 @@ def convert_input_to_xarray_dataset(
"precip_var": var_name,
}
dataset = xr.Dataset(data_vars=data_vars, coords=coords, attrs=attrs)
return dataset.sortby(["y", "x"])
return dataset.sortby(dims)


def convert_output_to_xarray_dataset(
Expand Down

0 comments on commit c2ae9db

Please sign in to comment.