-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
E2E example for heterogeneous edge-temporal sampling (#8383)
Adding homogeneous and heterogenous examples based on MovieLens dataset for edge-temporal sampling. Thanks, Poovaiah --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Akihiro Nitta <[email protected]> Co-authored-by: Matthias Fey <[email protected]>
- Loading branch information
1 parent
f4f48a2
commit e167d2b
Showing
2 changed files
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
import os.path as osp | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from torch.nn import Linear | ||
|
||
import torch_geometric.transforms as T | ||
from torch_geometric.datasets import MovieLens | ||
from torch_geometric.loader import LinkNeighborLoader | ||
from torch_geometric.nn import SAGEConv, to_hetero | ||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens') | ||
dataset = MovieLens(path, model_name='all-MiniLM-L6-v2') | ||
data = dataset[0] | ||
|
||
# Add user node features for message passing: | ||
data['user'].x = torch.eye(data['user'].num_nodes, device=device) | ||
del data['user'].num_nodes | ||
|
||
# Add a reverse ('movie', 'rev_rates', 'user') relation for message passing: | ||
data = T.ToUndirected()(data) | ||
del data['movie', 'rev_rates', 'user'].edge_label # Remove "reverse" label. | ||
|
||
# Perform a 80/10/10 temporal link-level split: | ||
perm = torch.argsort(data['user', 'movie'].time) | ||
train_idx = perm[:int(0.8 * perm.size(0))] | ||
val_idx = perm[int(0.8 * perm.size(0)):int(0.9 * perm.size(0))] | ||
test_idx = perm[int(0.9 * perm.size(0)):] | ||
|
||
edge_index = data['user', 'movie'].edge_index | ||
kwargs = dict( | ||
data=data, | ||
num_neighbors=[20, 10], | ||
batch_size=1024, | ||
time_attr='time', | ||
temporal_strategy='last', | ||
num_workers=4, | ||
persistent_workers=True, | ||
) | ||
train_loader = LinkNeighborLoader( | ||
edge_label_index=(('user', 'movie'), edge_index[:, train_idx]), | ||
edge_label=data['user', 'movie'].edge_label[train_idx], | ||
edge_label_time=data['user', 'movie'].time[train_idx] - 1, | ||
shuffle=True, | ||
**kwargs, | ||
) | ||
val_loader = LinkNeighborLoader( | ||
edge_label_index=(('user', 'movie'), edge_index[:, val_idx]), | ||
edge_label=data['user', 'movie'].edge_label[val_idx], | ||
edge_label_time=data['user', 'movie'].time[val_idx] - 1, | ||
**kwargs, | ||
) | ||
test_loader = LinkNeighborLoader( | ||
edge_label_index=(('user', 'movie'), edge_index[:, test_idx]), | ||
edge_label=data['user', 'movie'].edge_label[test_idx], | ||
edge_label_time=data['user', 'movie'].time[test_idx] - 1, | ||
**kwargs, | ||
) | ||
|
||
|
||
class GNNEncoder(torch.nn.Module): | ||
def __init__(self, hidden_channels, out_channels): | ||
super().__init__() | ||
self.conv1 = SAGEConv((-1, -1), hidden_channels) | ||
self.conv2 = SAGEConv((-1, -1), out_channels) | ||
|
||
def forward(self, x, edge_index): | ||
x = self.conv1(x, edge_index).relu() | ||
x = self.conv2(x, edge_index) | ||
return x | ||
|
||
|
||
class EdgeDecoder(torch.nn.Module): | ||
def __init__(self, hidden_channels): | ||
super().__init__() | ||
self.lin1 = Linear(2 * hidden_channels, hidden_channels) | ||
self.lin2 = Linear(hidden_channels, 1) | ||
|
||
def forward(self, z_dict, edge_label_index): | ||
row, col = edge_label_index | ||
z = torch.cat([z_dict['user'][row], z_dict['movie'][col]], dim=-1) | ||
|
||
z = self.lin1(z).relu() | ||
z = self.lin2(z) | ||
return z.view(-1) | ||
|
||
|
||
class Model(torch.nn.Module): | ||
def __init__(self, hidden_channels): | ||
super().__init__() | ||
self.encoder = GNNEncoder(hidden_channels, hidden_channels) | ||
self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum') | ||
self.decoder = EdgeDecoder(hidden_channels) | ||
|
||
def forward(self, x_dict, edge_index_dict, edge_label_index): | ||
z_dict = self.encoder(x_dict, edge_index_dict) | ||
return self.decoder(z_dict, edge_label_index) | ||
|
||
|
||
model = Model(hidden_channels=32).to(device) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | ||
|
||
|
||
def train(): | ||
model.train() | ||
total_loss = total_examples = 0 | ||
for batch in train_loader: | ||
batch = batch.to(device) | ||
optimizer.zero_grad() | ||
pred = model( | ||
batch.x_dict, | ||
batch.edge_index_dict, | ||
batch['user', 'movie'].edge_label_index, | ||
) | ||
target = batch['user', 'movie'].edge_label.float() | ||
loss = F.mse_loss(pred, target) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
total_loss += float(loss * pred.size(0)) | ||
total_examples += pred.size(0) | ||
|
||
return total_loss / total_examples | ||
|
||
|
||
@torch.no_grad() | ||
def test(loader): | ||
model.eval() | ||
preds, targets = [], [] | ||
for batch in loader: | ||
batch = batch.to(device) | ||
pred = model( | ||
batch.x_dict, | ||
batch.edge_index_dict, | ||
batch['user', 'movie'].edge_label_index, | ||
).clamp(min=0, max=5) | ||
preds.append(pred) | ||
targets.append(batch['user', 'movie'].edge_label.float()) | ||
|
||
pred = torch.cat(preds, dim=0) | ||
target = torch.cat(targets, dim=0) | ||
rmse = (pred - target).pow(2).mean().sqrt() | ||
return float(rmse) | ||
|
||
|
||
for epoch in range(1, 11): | ||
loss = train() | ||
val_rmse = test(val_loader) | ||
test_rmse = test(test_loader) | ||
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val RMSE: {val_rmse:.4f}, ' | ||
f'Test RMSE: {test_rmse:.4f}') |