Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated regression example inline with other examples #1300

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions regression/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
# Linear regression example

Trains a single fully-connected layer to fit a 4th degree polynomial.

```bash
pip install -r requirements.txt
python main.py
```
133 changes: 106 additions & 27 deletions regression/main.py
Original file line number Diff line number Diff line change
@@ -1,23 +1,47 @@
#!/usr/bin/env python
from __future__ import print_function
from itertools import count

import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR

# Polynomial degree and target weights/bias
POLY_DEGREE = 4
W_target = torch.randn(POLY_DEGREE, 1) * 5
b_target = torch.randn(1) * 5


def parse_args():
"""Command line arguments"""
parser = argparse.ArgumentParser(description='Polynomial Regression Example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For saving the current model')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
return parser.parse_args()


def make_features(x):
"""Builds features i.e. a matrix with columns [x, x^2, x^3, x^4]."""
x = x.unsqueeze(1)
return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1)
return torch.cat([x ** i for i in range(1, POLY_DEGREE + 1)], 1)


def f(x):
"""Approximated function."""
"""Approximated function. function f(x) = W_target * x + b_target"""
return x.mm(W_target) + b_target.item()


Expand All @@ -38,31 +62,86 @@ def get_batch(batch_size=32):
return x, y


# Define model
fc = torch.nn.Linear(W_target.size(0), 1)
class PolyRegressor(torch.nn.Module):
"""Define the model (simple linear regression)"""
def __init__(self):
super(PolyRegressor, self).__init__()
self.fc = torch.nn.Linear(POLY_DEGREE, 1)

def forward(self, x):
return self.fc(x)


def train(args, model, device, optimizer, epoch, log_interval=10):
"""Training loop"""
model.train()
for batch_idx in range(1, args.epochs + 1):
# Get a batch of data
batch_x, batch_y = get_batch(args.batch_size)
batch_x, batch_y = batch_x.to(device), batch_y.to(device)

# Reset gradients
optimizer.zero_grad()

# Forward pass
output = model(batch_x)
loss = F.smooth_l1_loss(output, batch_y)

# Backward pass
loss.backward()

# Apply gradients
optimizer.step()

if batch_idx % log_interval == 0:
print(f'Epoch {epoch} Batch {batch_idx}/{args.epochs} Loss: {loss.item():.6f}')

# Dry run for a quick check
if args.dry_run:
break


def test(model, device):
"""Test function (in this case, we'll use it to print the learned function)"""
model.eval()
model.to(device)
with torch.no_grad():
print('==> Learned function:')
print(poly_desc(model.fc.weight.view(-1), model.fc.bias))
print('==> Actual function:')
print(poly_desc(W_target.view(-1), b_target))


def main():
args = parse_args()

# Set the random seed
torch.manual_seed(args.seed)

# Select the device (GPU/CPU)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")

for batch_idx in count(1):
# Get data
batch_x, batch_y = get_batch()
# Initialize the model, optimizer and scheduler
model = PolyRegressor().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

# Reset gradients
fc.zero_grad()
# Training loop
for epoch in range(1, args.epochs + 1):
train(args, model, device, optimizer, epoch, args.log_interval)
scheduler.step()

# Forward pass
output = F.smooth_l1_loss(fc(batch_x), batch_y)
loss = output.item()
# Print the learned function after each epoch
test(model, device)

# Backward pass
output.backward()
if args.save_model:
torch.save(model.state_dict(), "polynomial_regressor.pt")

# Apply gradients
for param in fc.parameters():
param.data.add_(-0.1 * param.grad)
print("Training complete.")
if args.save_model:
print("Model saved to polynomial_regressor.pt")

# Stop criterion
if loss < 1e-3:
break

print('Loss: {:.6f} after {} batches'.format(loss, batch_idx))
print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
if __name__ == '__main__':
main()
2 changes: 2 additions & 0 deletions regression/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
torch
torchvision==0.20.0