-
Notifications
You must be signed in to change notification settings - Fork 328
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Vincent Moens <[email protected]>
- Loading branch information
Showing
9 changed files
with
1,078 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -136,6 +136,7 @@ CQL | |
:template: rl_template_noinherit.rst | ||
|
||
CQLLoss | ||
DiscreteCQLLoss | ||
|
||
DT | ||
---- | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# Task and env | ||
env: | ||
name: CartPole-v1 | ||
task: "" | ||
library: gym | ||
exp_name: cql_cartpole_gym | ||
n_samples_stats: 1000 | ||
max_episode_steps: 200 | ||
seed: 0 | ||
|
||
# Collector | ||
collector: | ||
frames_per_batch: 200 | ||
total_frames: 20000 | ||
multi_step: 0 | ||
init_random_frames: 1000 | ||
env_per_collector: 1 | ||
device: cpu | ||
max_frames_per_traj: 200 | ||
annealing_frames: 10000 | ||
eps_start: 1.0 | ||
eps_end: 0.01 | ||
# logger | ||
logger: | ||
backend: wandb | ||
log_interval: 5000 # record interval in frames | ||
eval_steps: 200 | ||
mode: online | ||
eval_iter: 1000 | ||
|
||
# Buffer | ||
replay_buffer: | ||
prb: 0 | ||
buffer_prefetch: 64 | ||
size: 1_000_000 | ||
scratch_dir: ${env.exp_name}_${env.seed} | ||
|
||
# Optimization | ||
optim: | ||
utd_ratio: 1 | ||
device: cuda:0 | ||
lr: 1e-3 | ||
weight_decay: 0.0 | ||
batch_size: 256 | ||
lr_scheduler: "" | ||
optim_steps_per_batch: 200 | ||
|
||
# Policy and model | ||
model: | ||
hidden_sizes: [256, 256] | ||
activation: relu | ||
|
||
# loss | ||
loss: | ||
loss_function: l2 | ||
gamma: 0.99 | ||
tau: 0.005 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
"""Discrete (DQN) CQL Example. | ||
This is a simple self-contained example of a discrete CQL training script. | ||
It supports state environments like gym and gymnasium. | ||
The helper functions are coded in the utils.py associated with this script. | ||
""" | ||
|
||
import time | ||
|
||
import hydra | ||
import numpy as np | ||
import torch | ||
import torch.cuda | ||
import tqdm | ||
|
||
from torchrl.envs.utils import ExplorationType, set_exploration_type | ||
|
||
from torchrl.record.loggers import generate_exp_name, get_logger | ||
from utils import ( | ||
log_metrics, | ||
make_collector, | ||
make_cql_optimizer, | ||
make_discretecql_model, | ||
make_discreteloss, | ||
make_environment, | ||
make_replay_buffer, | ||
) | ||
|
||
|
||
@hydra.main(version_base="1.1", config_path=".", config_name="discrete_cql_config") | ||
def main(cfg: "DictConfig"): # noqa: F821 | ||
device = torch.device(cfg.optim.device) | ||
|
||
# Create logger | ||
exp_name = generate_exp_name("DiscreteCQL", cfg.env.exp_name) | ||
logger = None | ||
if cfg.logger.backend: | ||
logger = get_logger( | ||
logger_type=cfg.logger.backend, | ||
logger_name="discretecql_logging", | ||
experiment_name=exp_name, | ||
wandb_kwargs={"mode": cfg.logger.mode, "config": cfg}, | ||
) | ||
|
||
# Set seeds | ||
torch.manual_seed(cfg.env.seed) | ||
np.random.seed(cfg.env.seed) | ||
|
||
# Create environments | ||
train_env, eval_env = make_environment(cfg) | ||
|
||
# Create agent | ||
model, explore_policy = make_discretecql_model(cfg, train_env, eval_env, device) | ||
|
||
# Create loss | ||
loss_module, target_net_updater = make_discreteloss(cfg.loss, model) | ||
|
||
# Create off-policy collector | ||
collector = make_collector(cfg, train_env, explore_policy) | ||
|
||
# Create replay buffer | ||
replay_buffer = make_replay_buffer( | ||
batch_size=cfg.optim.batch_size, | ||
prb=cfg.replay_buffer.prb, | ||
buffer_size=cfg.replay_buffer.size, | ||
buffer_scratch_dir=cfg.replay_buffer.scratch_dir, | ||
device="cpu", | ||
) | ||
|
||
# Create optimizers | ||
optimizer = make_cql_optimizer(cfg, loss_module) | ||
|
||
# Main loop | ||
collected_frames = 0 | ||
pbar = tqdm.tqdm(total=cfg.collector.total_frames) | ||
|
||
init_random_frames = cfg.collector.init_random_frames | ||
num_updates = int( | ||
cfg.collector.env_per_collector | ||
* cfg.collector.frames_per_batch | ||
* cfg.optim.utd_ratio | ||
) | ||
prb = cfg.replay_buffer.prb | ||
eval_rollout_steps = cfg.env.max_episode_steps | ||
eval_iter = cfg.logger.eval_iter | ||
frames_per_batch = cfg.collector.frames_per_batch | ||
|
||
start_time = sampling_start = time.time() | ||
for tensordict in collector: | ||
sampling_time = time.time() - sampling_start | ||
|
||
# Update exploration policy | ||
explore_policy[1].step(tensordict.numel()) | ||
|
||
# Update weights of the inference policy | ||
collector.update_policy_weights_() | ||
|
||
pbar.update(tensordict.numel()) | ||
|
||
tensordict = tensordict.reshape(-1) | ||
current_frames = tensordict.numel() | ||
# Add to replay buffer | ||
replay_buffer.extend(tensordict.cpu()) | ||
collected_frames += current_frames | ||
|
||
# Optimization steps | ||
training_start = time.time() | ||
if collected_frames >= init_random_frames: | ||
( | ||
q_losses, | ||
cql_losses, | ||
) = ([], []) | ||
for _ in range(num_updates): | ||
|
||
# Sample from replay buffer | ||
sampled_tensordict = replay_buffer.sample() | ||
if sampled_tensordict.device != device: | ||
sampled_tensordict = sampled_tensordict.to( | ||
device, non_blocking=True | ||
) | ||
else: | ||
sampled_tensordict = sampled_tensordict.clone() | ||
|
||
# Compute loss | ||
loss_dict = loss_module(sampled_tensordict) | ||
|
||
q_loss = loss_dict["loss_qvalue"] | ||
cql_loss = loss_dict["loss_cql"] | ||
loss = q_loss + cql_loss | ||
|
||
# Update model | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
q_losses.append(q_loss.item()) | ||
cql_losses.append(cql_loss.item()) | ||
|
||
# Update target params | ||
target_net_updater.step() | ||
# Update priority | ||
if prb: | ||
replay_buffer.update_priority(sampled_tensordict) | ||
|
||
training_time = time.time() - training_start | ||
episode_end = ( | ||
tensordict["next", "done"] | ||
if tensordict["next", "done"].any() | ||
else tensordict["next", "truncated"] | ||
) | ||
episode_rewards = tensordict["next", "episode_reward"][episode_end] | ||
|
||
# Logging | ||
metrics_to_log = {} | ||
if len(episode_rewards) > 0: | ||
episode_length = tensordict["next", "step_count"][episode_end] | ||
metrics_to_log["train/reward"] = episode_rewards.mean().item() | ||
metrics_to_log["train/episode_length"] = episode_length.sum().item() / len( | ||
episode_length | ||
) | ||
metrics_to_log["train/epsilon"] = explore_policy[1].eps | ||
|
||
if collected_frames >= init_random_frames: | ||
metrics_to_log["train/q_loss"] = np.mean(q_losses) | ||
metrics_to_log["train/cql_loss"] = np.mean(cql_losses) | ||
metrics_to_log["train/sampling_time"] = sampling_time | ||
metrics_to_log["train/training_time"] = training_time | ||
|
||
# Evaluation | ||
if abs(collected_frames % eval_iter) < frames_per_batch: | ||
with set_exploration_type(ExplorationType.MODE), torch.no_grad(): | ||
eval_start = time.time() | ||
eval_rollout = eval_env.rollout( | ||
eval_rollout_steps, | ||
model, | ||
auto_cast_to_device=True, | ||
break_when_any_done=True, | ||
) | ||
eval_time = time.time() - eval_start | ||
eval_reward = eval_rollout["next", "reward"].sum(-2).mean().item() | ||
metrics_to_log["eval/reward"] = eval_reward | ||
metrics_to_log["eval/time"] = eval_time | ||
if logger is not None: | ||
log_metrics(logger, metrics_to_log, collected_frames) | ||
sampling_start = time.time() | ||
|
||
collector.shutdown() | ||
end_time = time.time() | ||
execution_time = end_time - start_time | ||
print(f"Training took {execution_time:.2f} seconds to finish") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.