Fix how stream flag is read from request #2581
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Run parallel prefill | |
on: | |
pull_request: | |
push: | |
branches: | |
- main | |
workflow_dispatch: | |
jobs: | |
test-cuda: | |
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main | |
with: | |
runner: linux.g5.4xlarge.nvidia.gpu | |
gpu-arch-type: cuda | |
gpu-arch-version: "12.4" | |
timeout: 60 | |
script: | | |
echo "::group::Print machine info" | |
uname -a | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
# Install requirements | |
./install/install_requirements.sh cuda | |
pip3 list | |
python3 -c 'import torch;print(f"torch: {torch.__version__, torch.version.git_version}")' | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
mkdir -p checkpoints/stories15M | |
pushd checkpoints/stories15M | |
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt | |
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model | |
popd | |
echo "::endgroup::" | |
echo "::group::Run inference" | |
export MODEL_PATH=checkpoints/stories15M/stories15M.pt | |
export MODEL_NAME=stories15M | |
export MODEL_DIR=/tmp | |
for DTYPE in bfloat16 float16 float32; do | |
################################################################### | |
# group with different temperatures | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 | |
################################################################### | |
# group with different temperatures and prefill, and compile | |
# and prefill compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --compile --compile-prefill | |
################################################################### | |
# group with different temperatures and sequential prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill | |
################################################################### | |
# group with different temperatures and prefill, and compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill --compile | |
done | |
echo "tests complete" | |
echo "******************************************" | |
echo "::endgroup::" |