forked from f-dangel/backpack
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ADD] K-FAC for BatchNormNd (f-dangel#259)
Extension to support BatchNormNd (eval) K-FAC Resolves f-dangel/issues/259 Auxiliary: - The kfac quantity contains only one element, and represents the GGN approximation. - It only supports the evaluation mode. - A test script (test_kfac_bn.py) checks these two properties. Signed-off-by: pyun <[email protected]>
- Loading branch information
Showing
3 changed files
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
from torch import einsum | ||
from torch import Tensor | ||
from torch.nn import BatchNorm1d, BatchNorm2d, BatchNorm3d | ||
from typing import Tuple, Union | ||
|
||
from backpack.extensions.secondorder.hbp.hbpbase import HBPBaseModule | ||
from backpack.core.derivatives.batchnorm_nd import BatchNormNdDerivatives | ||
from backpack.extensions.backprop_extension import BackpropExtension | ||
from backpack.utils.errors import batch_norm_raise_error_if_train | ||
|
||
class HBPBatchNormNd(HBPBaseModule): | ||
def __init__(self): | ||
super().__init__(BatchNormNdDerivatives(), params=["weight", "bias"]) | ||
|
||
def weight(self, ext, module, grad_inp, grad_out, backproped): | ||
x_hat, _ = self.derivatives._get_normalized_input_and_var(module) | ||
v = backproped | ||
JTv = einsum("mnc...,nc...->mnc", v, x_hat) | ||
kfac_gamma = einsum("mnc...,mnd...->cd", JTv, JTv) | ||
return [kfac_gamma] | ||
|
||
def bias(self, ext, module, grad_inp, grad_out, backproped): | ||
v = backproped | ||
JTv = v | ||
kfac_beta = einsum("mnc...,mnd...->cd", JTv, JTv) | ||
return [kfac_beta] | ||
|
||
def check_hyperparameters_module_extension( | ||
self, | ||
ext: BackpropExtension, | ||
module: Union[BatchNorm1d, BatchNorm2d, BatchNorm3d], | ||
g_inp: Tuple[Tensor], | ||
g_out: Tuple[Tensor], | ||
) -> None: # noqa: D102 | ||
batch_norm_raise_error_if_train(module) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import torch | ||
from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential, BatchNorm1d | ||
from matplotlib import pyplot as plt | ||
|
||
from backpack import backpack, extend | ||
from backpack.extensions import KFAC, SqrtGGNExact | ||
from backpack.utils.examples import load_one_batch_mnist | ||
|
||
def visualize_hessian(H, param_names, param_length, fig_path, vmin=None, vmax=None): | ||
''' | ||
Args: | ||
H(torch.Tensor): Hessian matrix ([M, M]) | ||
param_names(List[str]): list of param names | ||
param_length(List[int]): list of param lengths | ||
fig_path(str): path to save the figure | ||
Returns: | ||
H_min(float): min of H | ||
H_max(float): max of H | ||
''' | ||
plt.figure(figsize=(10,10)) | ||
plt.imshow(H.cpu().numpy(), vmin=vmin, vmax=vmax, origin='upper') | ||
acc = -0.5 | ||
all_ = H.shape[0] | ||
for name, l in zip(param_names, param_length): | ||
plt.plot([0-0.5, all_], [acc, acc], 'b-', linewidth=2) | ||
plt.plot([acc, acc], [0-0.5, all_], 'b-', linewidth=2) | ||
acc+= l | ||
plt.xlim([-0.5, all_-0.5]) | ||
plt.ylim([all_-0.5, -0.5]) | ||
plt.colorbar() | ||
plt.savefig(fig_path, bbox_inches='tight') | ||
return H.min(), H.max() | ||
|
||
X, y = load_one_batch_mnist(batch_size=512) | ||
model = Sequential(Flatten(), Linear(784, 3), BatchNorm1d(3), Linear(3, 10)) | ||
lossfunc = CrossEntropyLoss() | ||
model = extend(model.eval()) | ||
lossfunc = extend(lossfunc) | ||
|
||
loss = lossfunc(model(X), y) | ||
with backpack(KFAC(mc_samples=1000), SqrtGGNExact()): | ||
loss.backward() | ||
|
||
for name, param in model.named_parameters(): | ||
GGN_VT = param.sqrt_ggn_exact.reshape(-1, param.numel()) | ||
GGN = GGN_VT.t() @ GGN_VT | ||
KFAC_ = torch.kron(param.kfac[0], param.kfac[1]) if len(param.kfac) == 2 \ | ||
else param.kfac[0] | ||
visualize_hessian(GGN, [name], [param.numel()], f"./{name}_GGN.png") | ||
visualize_hessian(KFAC_, [name], [param.numel()], f"./{name}_KFAC.png") | ||
print(name, torch.norm(GGN-KFAC_, 2).item()) | ||
|
||
# Check handeling the train mode situation | ||
model = extend(model.train()) | ||
loss = lossfunc(model(X), y) | ||
try: | ||
with backpack(KFAC(mc_samples=1000), SqrtGGNExact()): | ||
loss.backward() | ||
except NotImplementedError: | ||
print("PASS. It raises NotImplementedError when model is in the training mode.") |