Skip to content

qjy981010/CRNN.pytorch.IIIT-5K

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

For Chinese: 详细做法请参考我的博客

CRNN

A pytorch implementation of CRNN,and test it with IIIT-5K.
Support PyTorch 1.0 now.

Paper.

Netword Struct:

Type Configurations Output Size
Input W × 32 gray-scale image W × 32 × 1
Convolution #maps:64, k:3 × 3, s:1, p:1 W × 32 × 64
MaxPooling Window:2 × 2, s:2 W/2 × 16 × 64
Convolution #maps:128, k:3 × 3, s:1, p:1 W/2 × 16 × 128
MaxPooling Window:2 × 2, s:2 W/4 × 8 × 128
Convolution #maps:256, k:3 × 3, s:1, p:1 W/4 × 8 × 256
Convolution #maps:256, k:3 × 3, s:1, p:1 W/4 × 8 × 256
MaxPooling Window:1 × 2, s:2 W/4 × 4 × 256
Convolution #maps:512, k:3 × 3, s:1, p:1 W/4 × 4 × 512
BatchNormalization - W/4 × 4 × 512
Convolution #maps:512, k:3 × 3, s:1, p:1 W/4 × 4 × 512
BatchNormalization - W/4 × 4 × 512
MaxPooling Window:1 × 2, s:2 W/4 × 2 × 512
Convolution #maps:512, k:2 × 2, s:1, p:0 W/4-1 × 1 × 512
Map-to-Sequence - W/4-1 × 512
Bidirectional-LSTM #hidden units:256 W/4-1 × 256
Bidirectional-LSTM #hidden units:256 W/4-1 × label_num
Transcription - str

Requirements

  • Python 3
  • PyTorch 1.0

Usage

Click here and download IIIT-5K dataset to the 'data/' folder of current path.

python main.py --fix_depth

You can tune the hyperparameters for better performence.

Releases

No releases published

Packages

No packages published

Languages