-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from qutip/dev/structure
Setup structure for tutorials website
- Loading branch information
Showing
12 changed files
with
548 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
--- | ||
title: "Cavity QED system" | ||
author: Shen-Liang Yang, Yi-Te Huang | ||
date: last-modified | ||
date-format: iso | ||
|
||
engine: julia | ||
--- | ||
|
||
## Introduction | ||
|
||
Cavity quantum electrodynamics (cavity QED) is an important topic for studying the interaction between atoms (or other particles) and light confined in a reflective cavity, under conditions where the quantum nature of photons is significant. | ||
|
||
## Hamiltonian | ||
|
||
The Jaynes-Cummings model is a standard model in the realm of cavity QED. It illustrates the interaction between a two-level atom ($\textrm{A}$) and a quantized single-mode within a cavity ($\textrm{c}$). | ||
|
||
Now, we need to build the system Hamiltonian and initial state with the package [`QuantumToolbox.jl`](https://github.com/qutip/QuantumToolbox.jl) to construct the operators. | ||
|
||
$$ | ||
\begin{aligned} | ||
H_{\textrm{s}}&=H_{\textrm{A}}+H_{\textrm{c}}+H_{\textrm{int}},\\ | ||
H_{\textrm{A}}&=\frac{\omega_A}{2}\sigma_z,\\ | ||
H_{\textrm{c}}&=\omega_{\textrm{c}} a^\dagger a,\\ | ||
H_{\textrm{int}}&=g (a^\dagger\sigma^-+a\sigma^+), | ||
\end{aligned} | ||
$$ | ||
|
||
where $\sigma^-$ ($\sigma^+$) is the annihilation (creation) operator of the atom, and $a$ ($a^\dagger$) is the annihilation (creation) operator of the cavity. | ||
|
||
Furthermore, we consider the system is coupled to a bosonic reservoir ($\textrm{b}$). The total Hamiltonian is given by $H_{\textrm{Total}}=H_\textrm{s}+H_\textrm{b}+H_\textrm{sb}$, where $H_\textrm{b}$ and $H_\textrm{sb}$ takes the form | ||
|
||
$$ | ||
\begin{aligned} | ||
H_{\textrm{b}} &=\sum_{k}\omega_{k}b_{k}^{\dagger}b_{k},\\ | ||
H_{\textrm{sb}} &=(a+a^\dagger)\sum_{k}g_{k}(b_k + b_k^{\dagger}). | ||
\end{aligned} | ||
$$ | ||
|
||
Here, $H_{\textrm{b}}$ describes a bosonic reservoir where $b_{k}$ $(b_{k}^{\dagger})$ is the bosonic annihilation (creation) operator associated to the $k$th mode (with frequency $\omega_{k}$). Also, $H_{\textrm{sb}}$ illustrates the interaction between the cavity and the bosonic reservoir. | ||
|
||
Now, we need to build the system Hamiltonian and initial state with the package [`QuantumToolbox.jl`](https://github.com/qutip/QuantumToolbox.jl) to construct the operators. | ||
|
||
```{julia} | ||
using HierarchicalEOM | ||
using CairoMakie | ||
``` | ||
|
||
```{julia} | ||
N = 3 ## system cavity Hilbert space cutoff | ||
ωA = 2 | ||
ωc = 2 | ||
g = 0.1 | ||
# operators | ||
a_c = destroy(N) | ||
I_c = qeye(N) | ||
σz_A = sigmaz() | ||
σm_A = sigmam() | ||
I_A = qeye(2) | ||
# operators in tensor-space | ||
a = tensor(a_c, I_A) | ||
σz = tensor(I_c, σz_A) | ||
σm = tensor(I_c, σm_A) | ||
# Hamiltonian | ||
H_A = 0.5 * ωA * σz | ||
H_c = ωc * a' * a | ||
H_int = g * (a' * σm + a * σm') | ||
H_s = H_A + H_c + H_int | ||
# initial state | ||
ψ0 = tensor(basis(N, 0), basis(2, 0)); | ||
``` | ||
|
||
## Construct bath objects | ||
We assume the bosonic reservoir to have a [Drude-Lorentz Spectral Density](https://qutip.org/HierarchicalEOM.jl/stable/bath_boson/Boson_Drude_Lorentz/#Boson-Drude-Lorentz), and we utilize the Padé decomposition. Furthermore, the spectral densities depend on the following physical parameters: | ||
|
||
- the coupling strength $\Gamma$ between system and reservoir | ||
- the band-width $W$ | ||
- the product of the Boltzmann constant $k$ and the absolute temperature $T$ : $kT$ | ||
- the total number of exponentials for the reservoir $(N + 1)$ | ||
|
||
```{julia} | ||
Γ = 0.01 | ||
W = 1 | ||
kT = 0.025 | ||
N = 20 | ||
Bath = Boson_DrudeLorentz_Pade(a + a', Γ, W, kT, N) | ||
``` | ||
|
||
Before incorporating the correlation function into the HEOMLS matrix, it is essential to verify (by using `correlation_function`) if the total number of exponentials for the reservoir sufficiently describes the practical situation. | ||
|
||
```{julia} | ||
tlist_test = 0:0.1:10; | ||
Bath_test = Boson_DrudeLorentz_Pade(a + a', Γ, W, kT, 1000); | ||
Ct = correlation_function(Bath, tlist_test); | ||
Ct2 = correlation_function(Bath_test, tlist_test) | ||
# plot | ||
fig = Figure(size = (500, 350)) | ||
ax = Axis(fig[1, 1], xlabel = L"t", ylabel = L"C(t)") | ||
lines!(ax, tlist_test, real(Ct2), label = L"$N=1000$ (real part)", linestyle = :solid) | ||
lines!(ax, tlist_test, real(Ct), label = L"$N=20$ (real part)", linestyle = :dash) | ||
lines!(ax, tlist_test, imag(Ct2), label = L"$N=1000$ (imag part)", linestyle = :solid) | ||
lines!(ax, tlist_test, imag(Ct), label = L"$N=20$ (imag part)", linestyle = :dash) | ||
axislegend(ax, position = :rt) | ||
fig | ||
``` | ||
|
||
## Construct HEOMLS matrix | ||
|
||
Here, we consider an incoherent pumping to the atom, which can be described by an Lindblad dissipator (see [here](https://qutip.org/HierarchicalEOM.jl/stable/heom_matrix/master_eq/) for more details). | ||
|
||
Furthermore, we set the [important threshold](https://qutip.org/HierarchicalEOM.jl/stable/heom_matrix/HEOMLS_intro/#doc-Importance-Value-and-Threshold) to be `1e-6`. | ||
|
||
```{julia} | ||
pump = 0.01 | ||
J_pump = sqrt(pump) * σm' | ||
tier = 2 | ||
M_Heom = M_Boson(H_s, tier, threshold = 1e-6, Bath) | ||
M_Heom = addBosonDissipator(M_Heom, J_pump) | ||
``` | ||
|
||
## Solve time evolution of ADOs | ||
|
||
```{julia} | ||
t_list = 0:1:500 | ||
sol_H = HEOMsolve(M_Heom, ψ0, t_list; e_ops = [σz, a' * a]) | ||
``` | ||
|
||
## Solve stationary state of ADOs | ||
|
||
```{julia} | ||
steady_H = steadystate(M_Heom); | ||
``` | ||
|
||
## Expectation values | ||
|
||
observable of atom: $\sigma_z$ | ||
|
||
```{julia} | ||
σz_evo_H = real(sol_H.expect[1, :]) | ||
σz_steady_H = expect(σz, steady_H) | ||
``` | ||
|
||
observable of cavity: $a^\dagger a$ (average photon number) | ||
|
||
```{julia} | ||
np_evo_H = real(sol_H.expect[2, :]) | ||
np_steady_H = expect(a' * a, steady_H) | ||
``` | ||
|
||
plot results | ||
|
||
```{julia} | ||
fig = Figure(size = (600, 350)) | ||
ax1 = Axis(fig[1, 1], xlabel = L"t") | ||
lines!(ax1, t_list, σz_evo_H, label = L"\langle \sigma_z \rangle", linestyle = :solid) | ||
lines!(ax1, t_list, ones(length(t_list)) .* σz_steady_H, label = L"\langle \sigma_z \rangle ~~(\textrm{steady})", linestyle = :dash) | ||
axislegend(ax1, position = :rt) | ||
ax2 = Axis(fig[2, 1], xlabel = L"t") | ||
lines!(ax2, t_list, np_evo_H, label = L"\langle a^\dagger a \rangle", linestyle = :solid) | ||
lines!(ax2, t_list, ones(length(t_list)) .* np_steady_H, label = L"\langle a^\dagger a \rangle ~~(\textrm{steady})", linestyle = :dash) | ||
axislegend(ax2, position = :rt) | ||
fig | ||
``` | ||
|
||
## Power spectrum | ||
|
||
```{julia} | ||
ω_list = 1:0.01:3 | ||
psd_H = PowerSpectrum(M_Heom, steady_H, a, ω_list) | ||
# plot | ||
fig = Figure(size = (500, 350)) | ||
ax = Axis(fig[1, 1], xlabel = L"\omega") | ||
lines!(ax, ω_list, psd_H) | ||
fig | ||
``` | ||
|
||
## Compare with Master Eq. approach | ||
|
||
The Lindblad master equations which describes the cavity couples to an extra bosonic reservoir with [Drude-Lorentzian spectral density](https://qutip.org/HierarchicalEOM.jl/stable/bath_boson/Boson_Drude_Lorentz/#Boson-Drude-Lorentz) is given by | ||
|
||
```{julia} | ||
# Drude_Lorentzian spectral density | ||
Drude_Lorentz(ω, Γ, W) = 4 * Γ * W * ω / ((ω)^2 + (W)^2) | ||
# Bose-Einstein distribution | ||
n_b(ω, kT) = 1 / (exp(ω / kT) - 1) | ||
# build the jump operators | ||
jump_op = [ | ||
sqrt(Drude_Lorentz(ωc, Γ, W) * (n_b(ωc, kT) + 1)) * a, | ||
sqrt(Drude_Lorentz(ωc, Γ, W) * (n_b(ωc, kT))) * a', | ||
J_pump | ||
]; | ||
# construct the HEOMLS matrix for master equation | ||
M_master = M_S(H_s) | ||
M_master = addBosonDissipator(M_master, jump_op) | ||
# time evolution | ||
sol_M = HEOMsolve(M_master, ψ0, t_list; e_ops = [σz, a' * a]); | ||
# steady state | ||
steady_M = steadystate(M_master); | ||
# expectation value of σz | ||
σz_evo_M = real(sol_M.expect[1, :]) | ||
σz_steady_M = expect(σz, steady_M) | ||
# average photon number | ||
np_evo_M = real(sol_M.expect[2, :]) | ||
np_steady_M = expect(a' * a, steady_M); | ||
``` | ||
|
||
plot results | ||
|
||
```{julia} | ||
fig = Figure(size = (600, 350)) | ||
ax1 = Axis(fig[1, 1], xlabel = L"t") | ||
lines!(ax1, t_list, σz_evo_M, label = L"\langle \sigma_z \rangle", linestyle = :solid) | ||
lines!(ax1, t_list, ones(length(t_list)) .* σz_steady_M, label = L"\langle \sigma_z \rangle ~~(\textrm{steady})", linestyle = :dash) | ||
axislegend(ax1, position = :rt) | ||
ax2 = Axis(fig[2, 1], xlabel = L"t") | ||
lines!(ax2, t_list, np_evo_M, label = L"\langle a^\dagger a \rangle", linestyle = :solid) | ||
lines!(ax2, t_list, ones(length(t_list)) .* np_steady_M, label = L"\langle a^\dagger a \rangle ~~(\textrm{steady})", linestyle = :dash) | ||
axislegend(ax2, position = :rt) | ||
fig | ||
``` | ||
|
||
We can also calculate the power spectrum | ||
|
||
```{julia} | ||
ω_list = 1:0.01:3 | ||
psd_M = PowerSpectrum(M_master, steady_M, a, ω_list) | ||
# plot | ||
fig = Figure(size = (500, 350)) | ||
ax = Axis(fig[1, 1], xlabel = L"\omega") | ||
lines!(ax, ω_list, psd_M) | ||
fig | ||
``` | ||
|
||
Due to the weak coupling between the system and an extra bosonic environment, the Master equation's outcome is expected to be similar to the results obtained from the HEOM method. | ||
|
||
## Version Information | ||
```{julia} | ||
HierarchicalEOM.versioninfo() | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
--- | ||
title: "Tutorials for `HierarchicalEOM.jl`" | ||
listing: | ||
id: HierarchicalEOM-listings | ||
type: table | ||
date-format: iso | ||
sort: false | ||
sort-ui: false | ||
fields: [date, title, author] | ||
contents: | ||
- "cavityQED.qmd" | ||
--- | ||
|
||
The following tutorials demonstrate and introduce specific functionality of `HierarchicalEOM.jl`. | ||
|
||
::: {#HierarchicalEOM-listings} | ||
::: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.