Table of contents generated with markdown-toc
Install torchvision
:
python -m pip install torchvision
python -m pip uninstall torch # if it was automatically installed by torchvision
Install the lazy-tensor-core
Python package by following their instructions.
Update PYTHONPATH
:
export PYTHONPATH=/path/to/pytorch/lazy_tensor_core:$PYTHONPATH
First install Lazy Tensor Core.
Install the following Python packages:
python -m pip transformers datasets
From inside the lazy-tensor-samples
directory, run:
python lazytensor_bert_example.py
The output of this example can be found in lazytensor_bert_example_output.txt.
First install Torchvision and Lazy Tensor Core.
Install the maskrcnn-benchmark
using my fork, which includes some changes to make the benchmark run on LTC:
git clone https://github.com/ramiro050/maskrcnn-benchmark.git
cd maskrcnn-benchmark
git checkout lazy-tensor-maskrcnn
Follow the maskrcnn-benchmark
installation instructions.
Update PYTHONPATH
:
export PYTHONPATH=/path/to/maskrcnn-benchmark/demo:$PYTHONPATH
From inside the lazy-tensor-samples
directory, run:
python lazytensor_maskrcnn_example.py path/to/image.png path/to/maskrcnn-benchmark
where img.png
is the image to run the model on.
The output of this example can be found in lazytensor_maskrcnn_example_output.txt.
First install Torchvision and Lazy Tensor Core.
Install the following Python packages:
python -m pip install pillow request
Install the library libsndfile
. On Ubuntu, simply run
sudo apt-get install libsndfile-dev
Install the PyTorch benchmarks using my fork, which includes some changes to make the benchmark run on LTC (the changes are based on this patch by @alanwaketan):
git clone https://github.com/ramiro050/benchmark.git
cd benchmark
git checkout lazytensor_support
Then follow these instructions to install the benchmark.
From inside the lazy-tensor-samples
directory, run:
python lazytensor_resnet18_example.py
The output of this example can be found in lazytensor_resnet18_example_output.txt.
From inside the benchmark directory, run:
python run.py resnet18 -d lazy -t train