Skip to content

raunaqbhirangi/hiss

Repository files navigation

Hierarchical State Space Models (HiSS)

poster-compressed

Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling
Raunaq Bhirangi, Chenyu Wang, Venkatesh Pattabiraman, Carmel Majidi, Abhinav Gupta, Tess Hellebrekers and Lerrel Pinto
Paper: https://arxiv.org/abs/2402.10211
Website: https://hiss-csp.github.io/

About

HiSS is a simple technique that stacks deep state space models like S4 and Mamba to reason over continuous sequences of sensory data over mutiple temporal hierarchies. We also release CSP-Bench: a benchmark for sequence-to-sequence prediction from sensory data.

Installation

  1. Clone the repository

  2. Create a conde environment from the provided env.yml file: conda env create -f env.yml

  3. Install Mamba based on the official instructions.

Note: If you run into CUDA issues while installing Mamba, run export CUDA_HOME=$CONDA_PREFIX, and try again. If you still have problems, install both causal_conv1d and mamba-ssm from source.

Data processing

  1. Refer to data_processing/README to download and extract the required dataset.

  2. Set the DATA_DIR variable in the hiss/utils/__init__.py file. This is the path to the parent directory which contains folders corresponding to every dataset.

  3. Process the datasets into format compatible with training
    Marker Writing: python data_processing/process_reskin_data.py -dd marker_writing_<hiss/full>_dataset
    Intrinsic Slip: python data_processing/process_reskin_data.py -dd intrinsic_slip_<hiss/full>_dataset
    Joystick Control: python data_processing/process_xela_data.py -dd joystick_control_<hiss/full>_dataset
    RoNIN: python data_processing/process_ronin_data.py
    VECtor: python data_processing/process_vector_data.py
    TotalCapture: python data_processing/process_total_capture_data.py

  4. Run create_dataset.py for the respective dataset to preprocess data and resample it at the desired frequencies.
    Marker Writing: python create_dataset.py --config-name marker_writing_config
    Intrinsic Slip: python create_dataset.py --config-name intrinsic_slip_config
    Joystick Control: python create_dataset.py --config-name joystick_control_config
    RoNIN:
    python create_dataset.py --config-name ronin_train_config
    python create_dataset.py --config-name ronin_test_config
    VECtor: python create_dataset.py --config-name vector_config
    TotalCapture:
    python create_dataset.py --config-name total_capture_train_config
    python create_dataset.py --config-name total_capture_test_config

Usage

To train HiSS models for sequential prediction, use the train.py file. For each dataset, we provide a <dataset_name>_hiss_config.yaml file in the conf/ directory, containing model parameters corresponding to the best-performing HiSS model for the respective dataset. To train the model, simply run

python train.py --config-name <dataset_name>_hiss_config

New datasets can be added by creating a corresponding Task object in line with tasks defined in vt_state/tasks, and creating a config file in conf/data_env/<data_env_name>.

About

Hierarchical State Space Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages