Skip to content

Commit

Permalink
Improve averageBigInteger and sumBigInteger precision/conversion (#286)
Browse files Browse the repository at this point in the history
This commit improves the precision and conversion behavior of `MathFlux`
`sumBigInteger` and `averageBigInteger` methods. These method better deal with
fractional types by internally summing using a `BigDecimal` rather than a
`BigInteger`. As a result, the only lossy step is at the end when the result is
effectively presented as a `BigInteger`: 
 - `sum`: remaining fractional part of the BigDecimal sum is dropped
 - `average`: the division by `count` is applied, then the result's fractional
 part is dropped

Previously the fractional part would be progressively dropped by implicit
conversion of each incoming element to `long`.

Similar to precision improvement done in #260/#261 and earlier iteration done
in #284.
  • Loading branch information
simonbasle authored Apr 11, 2022
1 parent ebdd035 commit 0bcce82
Show file tree
Hide file tree
Showing 4 changed files with 113 additions and 11 deletions.
21 changes: 20 additions & 1 deletion reactor-extra/src/main/java/reactor/math/MathFlux.java
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,10 @@ public static final <T> Mono<Double> sumDouble(Publisher<T> source, Function<? s

/**
* Computes the {@link BigInteger} sum of items in the source.
* <p>
* Further conversion of individual elements to {@link BigDecimal} is always applied to
* retain maximum precision. When the sum is ultimately produced, it can be rounded or
* truncated as a {@link BigDecimal#toBigInteger()} final conversion is applied.
*
* @param source the numerical source
* @return {@link Mono} of the sum of items in source
Expand All @@ -154,6 +158,10 @@ public static Mono<BigInteger> sumBigInteger(Publisher<? extends Number> source)
/**
* Computes the {@link BigInteger} sum of items in the source, which are mapped to
* numerical values using provided mapping.
* <p>
* Further conversion of individual elements to {@link BigDecimal} is always applied to
* retain maximum precision. When the sum is ultimately produced, it can be rounded or
* truncated as a {@link BigDecimal#toBigInteger()} final conversion is applied.
*
* @param source the source items
* @param mapping a function to map source items to numerical values
Expand Down Expand Up @@ -237,6 +245,11 @@ public static final <T> Mono<Double> averageDouble(Publisher<T> source, Function

/**
* Computes the {@link BigInteger} average of items in the source.
* <p>
* The average is computed by summing {@link BigDecimal}-converted values and ultimately
* dividing that number by the number of elements. Eventually the result of that division
* can be rounded or truncated, as the {@link java.math.RoundingMode#FLOOR FLOOR rounding mode}
* is applied and the {@link BigDecimal#toBigInteger()} final conversion is performed.
*
* @param source the numerical source
* @return {@link Mono} of the average of items in source
Expand All @@ -248,14 +261,20 @@ public static Mono<BigInteger> averageBigInteger(Publisher<? extends Number> sou
/**
* Computes the {@link BigInteger} average of items in the source, which are mapped to
* numerical values using the provided mapping.
* <p>
* Further conversion of individual elements to {@link BigDecimal} is always applied.
* The average is computed by summing {@link BigDecimal}-converted values and ultimately
* dividing that number by the number of elements. Eventually the result of that division
* can be rounded or truncated, as the {@link java.math.RoundingMode#FLOOR FLOOR rounding mode}
* is applied and the {@link BigDecimal#toBigInteger()} final conversion is performed.
*
* @param source the source items
* @param mapping a function to map source items to numerical values
* @return {@link Mono} of the average of items in source
*/
public static final <T> Mono<BigInteger> averageBigInteger(Publisher<T> source,
Function<? super T, ? extends Number> mapping) {
return MathMono.onAssembly(new MonoAverageBigInteger<T>(source, mapping));
return MathMono.onAssembly(new MonoAverageBigInteger<>(source, mapping));
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,9 @@

package reactor.math;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.function.Function;

import org.reactivestreams.Publisher;
Expand Down Expand Up @@ -52,7 +54,7 @@ private static final class AverageBigIntegerSubscriber<T>

private int count;

private BigInteger sum = BigInteger.ZERO;
private BigDecimal sum = BigDecimal.ZERO;

AverageBigIntegerSubscriber(CoreSubscriber<? super BigInteger> actual,
Function<? super T, ? extends Number> mapping) {
Expand All @@ -63,19 +65,28 @@ private static final class AverageBigIntegerSubscriber<T>
@Override
protected void reset() {
count = 0;
sum = BigInteger.ZERO;
sum = BigDecimal.ZERO;
}

@Override
protected BigInteger result() {
return (count == 0 ? null : sum.divide(BigInteger.valueOf(count)));
return (count == 0 ? null : sum.divide(BigDecimal.valueOf(count), RoundingMode.FLOOR).toBigInteger());
}

@Override
protected void updateResult(T newValue) {
Number number = mapping.apply(newValue);
BigInteger bigIntegerValue = BigInteger.valueOf(number.longValue());
sum = sum.add(bigIntegerValue);
BigDecimal bigDecimalValue;
if (number instanceof BigDecimal) {
bigDecimalValue = (BigDecimal) number;
}
else if (number instanceof BigInteger) {
bigDecimalValue = new BigDecimal((BigInteger) number);
}
else {
bigDecimalValue = new BigDecimal(number.toString());
}
sum = sum.add(bigDecimalValue);
count++;
}
}
Expand Down
20 changes: 15 additions & 5 deletions reactor-extra/src/main/java/reactor/math/MonoSumBigInteger.java
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

package reactor.math;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.function.Function;

Expand Down Expand Up @@ -50,7 +51,7 @@ static final private class SumBigIntegerSubscriber<T>

private final Function<? super T, ? extends Number> mapping;

BigInteger sum;
BigDecimal sum;

boolean hasValue;

Expand All @@ -62,20 +63,29 @@ static final private class SumBigIntegerSubscriber<T>

@Override
protected void reset() {
sum = BigInteger.ZERO;
sum = BigDecimal.ZERO;
hasValue = false;
}

@Override
protected BigInteger result() {
return (hasValue ? sum : null);
return (hasValue ? sum.toBigInteger() : null);
}

@Override
protected void updateResult(T newValue) {
Number number = mapping.apply(newValue);
BigInteger bigIntegerValue = BigInteger.valueOf(number.longValue());
sum = hasValue ? sum.add(bigIntegerValue) : bigIntegerValue;
BigDecimal bigDecimalValue;
if (number instanceof BigDecimal) {
bigDecimalValue = (BigDecimal) number;
}
else if (number instanceof BigInteger) {
bigDecimalValue = new BigDecimal((BigInteger) number);
}
else {
bigDecimalValue = new BigDecimal(number.toString());
}
sum = hasValue ? sum.add(bigDecimalValue) : bigDecimalValue;
hasValue = true;
}
}
Expand Down
62 changes: 62 additions & 0 deletions reactor-extra/src/test/java/reactor/math/ReactorMathTests.java
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,41 @@ public void emptySumBigInteger() {
verifyEmptyResult(MathFlux.sumBigInteger(Mono.empty()));
}

@Test
public void noOverflowSumBigInteger() {
long longValue = 1100000000000000L;
String bigValue = "12319800000000000000";
verifyResult(MathFlux.sumBigInteger(Mono.just(BigInteger.valueOf(longValue))), BigInteger.valueOf(longValue));
verifyResult(MathFlux.sumBigInteger(Mono.just(new BigInteger(bigValue, 10))), new BigInteger(bigValue, 10));
verifyResult(
MathFlux.sumBigInteger(Flux.just(BigInteger.valueOf(longValue), new BigInteger(bigValue, 10))),
new BigInteger(bigValue, 10).add(BigInteger.valueOf(longValue))
);
}

@Test
public void noProgressivePrecisionLossSumBigInteger() {
//smaller than 0.5d, but the fractional parts are individually taken into account
double overflowingValue1 = 0.2d;
double overflowingValue2 = 0.4d;
double overflowingValue3 = 0.4d;

verifyResult(MathFlux.sumBigInteger(Flux.just(Long.MAX_VALUE, overflowingValue1, overflowingValue2, overflowingValue3)),
BigInteger.valueOf(Long.MAX_VALUE).add(BigInteger.ONE));
}

@Test
public void finalPrecisionLossSumBigInteger() {
//smaller than 0.5d, but the fractional parts are individually taken into account
//but at the end the extra 0.2 is dropped
double overflowingValue1 = 0.4d;
double overflowingValue2 = 0.4d;
double overflowingValue3 = 0.4d;

verifyResult(MathFlux.sumBigInteger(Flux.just(Long.MAX_VALUE, overflowingValue1, overflowingValue2, overflowingValue3)),
BigInteger.valueOf(Long.MAX_VALUE).add(BigInteger.ONE));
}

@Test
public void fluxSumBigDecimal() {
int count = 10;
Expand Down Expand Up @@ -317,6 +352,33 @@ public void emptyAverageBigInteger() {
verifyEmptyResult(MathFlux.averageBigInteger(Mono.empty()));
}

@Test
public void noOverflowAverageBigInteger() {
long longValue = 1100000000000000L;
String bigValue = "12319800000000000000";
verifyResult(MathFlux.averageBigInteger(Mono.just(BigInteger.valueOf(longValue))), BigInteger.valueOf(longValue));
verifyResult(MathFlux.averageBigInteger(Mono.just(new BigInteger(bigValue, 10))), new BigInteger(bigValue, 10));
verifyResult(
MathFlux.averageBigInteger(Flux.just(BigInteger.valueOf(longValue), new BigInteger(bigValue, 10))),
new BigInteger(bigValue, 10).add(BigInteger.valueOf(longValue)).divide(BigInteger.valueOf(2L))
);
}

@Test
public void noProgressivePrecisionLossAverageBigInteger() {
Flux<Number> numbers = Flux.just(1001.4d, 1000.2d, 1001.4d);
//3003 / 3 == 1001. rounding down each number would instead result in 3002 / 3 == 1000

verifyResult(MathFlux.averageBigInteger(numbers), BigInteger.valueOf(1001));
}

@Test
public void finalPrecisionLossAverageBigInteger() {
Flux<Number> numbers = Flux.just(1001.4d, 1000.2d, 1000.4d);

verifyResult(MathFlux.averageBigInteger(numbers), BigInteger.valueOf(1000));
}

@Test
public void fluxAverageBigDecimal() {
int count = 10;
Expand Down

0 comments on commit 0bcce82

Please sign in to comment.