Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adds scorer to AggregateRequest #3409

Merged
merged 8 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions redis/commands/search/aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,7 @@ def __init__(self, query: str = "*") -> None:
self._cursor = []
self._dialect = None
self._add_scores = False
self._scorer = None

def load(self, *fields: List[str]) -> "AggregateRequest":
"""
Expand Down Expand Up @@ -300,6 +301,17 @@ def add_scores(self) -> "AggregateRequest":
self._add_scores = True
return self

def scorer(self, scorer: str) -> "AggregateRequest":
"""
Use a different scoring function to evaluate document relevance.
Default is `TFIDF`.

:param scorer: The scoring function to use
(e.g. `TFIDF.DOCNORM` or `BM25`)
rbs333 marked this conversation as resolved.
Show resolved Hide resolved
"""
self._scorer = scorer
return self

def verbatim(self) -> "AggregateRequest":
self._verbatim = True
return self
Expand All @@ -323,6 +335,9 @@ def build_args(self) -> List[str]:
if self._verbatim:
ret.append("VERBATIM")

if self._scorer:
ret.extend(["SCORER", self._scorer])

if self._add_scores:
ret.append("ADDSCORES")

Expand All @@ -332,6 +347,7 @@ def build_args(self) -> List[str]:
if self._loadall:
ret.append("LOAD")
ret.append("*")

elif self._loadfields:
ret.append("LOAD")
ret.append(str(len(self._loadfields)))
Expand Down
60 changes: 60 additions & 0 deletions tests/test_asyncio/test_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -1556,6 +1556,66 @@ async def test_aggregations_add_scores(decoded_r: redis.Redis):
assert res.rows[1] == ["__score", "0.2"]


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_aggregations_hybrid_scoring(decoded_r: redis.Redis):
assert await decoded_r.ft().create_index(
(
TextField("name", sortable=True, weight=5.0),
TextField("description", sortable=True, weight=5.0),
VectorField(
"vector",
"HNSW",
{"TYPE": "FLOAT32", "DIM": 2, "DISTANCE_METRIC": "COSINE"},
),
)
)

assert await decoded_r.hset(
"doc1",
mapping={
"name": "cat book",
"description": "a book about cats",
"vector": np.array([0.1, 0.2]).astype(np.float32).tobytes(),
},
)
assert await decoded_r.hset(
"doc2",
mapping={
"name": "dog book",
"description": "a book about dogs",
"vector": np.array([0.2, 0.1]).astype(np.float32).tobytes(),
},
)

query_string = "(@description:cat)=>[KNN 3 @vector $vec_param AS dist]"
req = (
aggregations.AggregateRequest(query_string)
.scorer("BM25")
.add_scores()
.apply(hybrid_score="@__score + @dist")
.load("*")
.dialect(4)
)

res = (
await decoded_r.ft()
.aggregate(
req,
query_params={
"vec_param": np.array([0.11, 0.21]).astype(np.float32).tobytes()
},
)
.rows[0]
)

assert len(res) == 6
assert b"hybrid_score" in res
assert b"__score" in res
assert b"__dist" in res
assert float(res[1]) + float(res[3]) == float(res[5])


@pytest.mark.redismod
@skip_if_redis_enterprise()
async def test_search_commands_in_pipeline(decoded_r: redis.Redis):
Expand Down
60 changes: 60 additions & 0 deletions tests/test_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -1466,6 +1466,66 @@ def test_aggregations_add_scores(client):
assert res.rows[1] == ["__score", "0.2"]


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_aggregations_hybrid_scoring(client):
client.ft().create_index(
(
TextField("name", sortable=True, weight=5.0),
TextField("description", sortable=True, weight=5.0),
VectorField(
"vector",
"HNSW",
{"TYPE": "FLOAT32", "DIM": 2, "DISTANCE_METRIC": "COSINE"},
),
)
)

client.hset(
"doc1",
mapping={
"name": "cat book",
"description": "a book about cats",
"vector": np.array([0.1, 0.2]).astype(np.float32).tobytes(),
},
)
client.hset(
"doc2",
mapping={
"name": "dog book",
"description": "a book about dogs",
"vector": np.array([0.2, 0.1]).astype(np.float32).tobytes(),
},
)

query_string = "(@description:cat)=>[KNN 3 @vector $vec_param AS dist]"
req = (
aggregations.AggregateRequest(query_string)
.scorer("BM25")
.add_scores()
.apply(hybrid_score="@__score + @dist")
.load("*")
.dialect(4)
)

res = (
client.ft()
.aggregate(
req,
query_params={
"vec_param": np.array([0.11, 0.21]).astype(np.float32).tobytes()
},
)
.rows[0]
)

assert len(res) == 6
assert b"hybrid_score" in res
assert b"__score" in res
assert b"__dist" in res
assert float(res[1]) + float(res[3]) == float(res[5])


@pytest.mark.redismod
@skip_ifmodversion_lt("2.0.0", "search")
def test_index_definition(client):
Expand Down
Loading