Skip to content

Cross-Validation for Model Assessment and Model Selection with Geospatial Data πŸŒπŸ“ˆ

Notifications You must be signed in to change notification settings

reidfalconer/14D001_spatial_cv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Spatial Cross-Validation

Description:

  • Cross-validation is a popular computational method used for model assessment and selection. However, with spatial data, many of the independence assumptions behind cross validation break down (due to spatial autocorrelation (SAC)). Therefore, this analysis will conduct an in-depth study of cross-validation methods for model assessment and selection on spatial data.

Results:

browse_by_tech

browse_by_tech

Conclusion:

  • Spatial data presents unique challenges for cross-validation model assessment and selection. In this notebook, we explore these challenges and study potential solutions using different techniques and multiple simulations. The simulations show that spatial CV methods do indeed outperform non-spatial CV methods at both assessment and selection on spatial data. More specifically, the results highlight that spatial CV methods tend to be less over-optimistic about model performance and are also better at selecting the true model instead of an overspecified one.

About

Cross-Validation for Model Assessment and Model Selection with Geospatial Data πŸŒπŸ“ˆ

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published