Skip to content

revpoint/python-confluent-schemaregistry

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Schema Registry Client

A Python client used to interact with Confluent's schema registry. Supports Python 2.6 and 2.7. This also works within a virtual env.

The API is heavily based off of the existing Java API of Confluent schema registry.

Installation

Run python setup.py install from the source root.

This library will be available via pip in the future.

Example Usage

from confluent.schemaregistry.client import CachedSchemaRegistryClient
from confluent.schemaregistry.serializers import MessageSerializer, Util

# Note that some methods may throw exceptions if
# the registry cannot be reached, decoding/encoding fails,
# or IO fails

# some helper methods in util to get a schema
avro_schema = Util.parse_schema_from_file('/path/to/schema.avsc')
avro_schema = Util.parse_schema_from_string(open('/path/to/schema.avsc').read())

# Initialize the client
client = CachedSchemaRegistryClient(url='http://registry.host')

# Schema operations

# register a schema for a subject
schema_id = client.register('my_subject', avro_schema)

# fetch a schema by ID
avro_schema = client.get_by_id(schema_id)

# get the latest schema info for a subject
schema_id,avro_schema,schema_version = client.get_latest_schema('my_subject')

# get the version of a schema
schema_version = client.get_version('my_subject', avro_schema)

# Compatibility tests
is_compatible = client.test_compatibility('my_subject', another_schema)

# One of NONE, FULL, FORWARD, BACKWARD
new_level = client.update_compatibility('NONE','my_subject')
current_level = client.get_compatibility('my_subject')

# Message operations

# encode a record to put onto kafka
serializer = MessageSerializer(client)
record = get_obj_to_put_into_kafka()

# use the schema id directly
encoded = serializer.encode_record_with_schema_id(schema_id, record)
# use an existing schema and topic
# this will register the schema to the right subject based
# on the topic name and then serialize
encoded = serializer.encode_record_with_schema('my_topic', avro_schema, record)

# encode a record with the latest schema for the topic
# this is not efficient as it queries for the latest
# schema each time
encoded = serializer.encode_record_for_topic('my_kafka_topic', record)


# decode a message from kafka
message = get_message_from_kafka()
decoded_object = serializer.decode_message(message)

Running Tests

pip install unittest2
unit2 discover -s test

Tests use unittest2 due to unittest being different between 2.6 and 2.7.

License

The project is licensed under the Apache 2 license.

About

A client for the Confluent Schema Registry API implemented in Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%