Skip to content

Support repository for the article "Soluções baseadas em aprendizado por reforço profundo para implantar VANTs como gateways LoRaWAN com foco na Qualidade de Serviço IoT" submitted to SBrT2024.

License

Notifications You must be signed in to change notification settings

rogerio-silva/A2C-LoVQI

Repository files navigation

A2C-LoVQI: A2C para implantar VANTs como gateways LoRaWAN com foco na Qualidade de Serviço IoT

Soluções baseadas em aprendizado por reforço profundo para implantar VANTs como gateways LoRaWAN com foco na Qualidade de Serviço IoT

This repository contains the code for the paper "Soluções baseadas em aprendizado por reforço profundo para implantar VANTs como gateways LoRaWAN com foco na Qualidade de Serviço IoT" submitted to the SBrT 2024.

How to use this repository

1. Prepare the environment

1.1 Get NS-3

NS-3 is a free, open-source project aiming to build a discrete-event network simulator targeted for simulation research and education. Get binaries from the official website.

Download a source archive of |ns3| to a location on your file system (usually somewhere under your home directory).

 wget -O <local-path> https://www.nsnam.org/releases/ns-allinone-3.41.tar.bz2 

Tar the file:

 tar -xjfv <local-path>/ns-allinone-3.41.tar.bz2

1.2 Build NS-3

Pre-requisites

Make sure that your system has these prerequisites. If not, install them using the following commands:

     # update the system
     sudo apt update && sudo apt upgrade -y
     # minimal requirements for release 3.37 and later
     sudo apt install g++ python3 cmake ninja-build git ccache
     # for the minimal requirements for Python visualizer and bindings
     python3 -m pip install --user cppyy
     sudo apt install gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 
     # Additional minimal requirements for Python (development): 
     sudo apt install python3-setuptools 
     # Netanim animator:
     sudo apt install qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools
     # Netanim for Ubuntu 20.04 and later, the single 'qt5-default' package suffices
     sudo apt install qt5-default
     # Support for MPI-based distributed emulation
     sudo apt install openmpi-bin openmpi-common openmpi-doc libopenmpi-dev
     # Debugging:
     sudo apt install gdb valgrind 
     # To read pcap packet traces
     sudo apt install tcpdump
     # Database support for statistics framework
     sudo apt install sqlite sqlite3 libsqlite3-dev
     # To experiment with virtual machines and ns-3
     sudo apt install vtun lxc uml-utilities

Build NS-3

Go to the directory where you extracted the tarball and run the following commands:

    cd ns-allinone-3.41
    ./build.py --enable-examples --enable-tests

1.3 Install additional third-party modules

1.3.1 Install the SIGNETLab/LoRaWAN module

Clone the LoRaWAN module on the ns-3.41/src directory:

    git clone https://github.com/signetlabdei/lorawan <local-path>/ns-3.41/src/lorawan

1.3.2 Install the CTTC/5G-LENA module

1.3.2.1 NR module pre-requisites
   # Install libc6-dev (it provides semaphore.h header file).  The Ubuntu package name is:
   sudo apt install libc6-dev
   # Install sqlite (enables optional examples lena-lte-comparison, cttc-nr-3gpp-calibration and cttc-realistic-beamforming):
   sudo apt install sqlite sqlite3 libsqlite3-dev
   # Install eigen3 (enables optional MIMO features):
   sudo apt-get install libeigen3-dev
1.3.2.2 Clone the CTTC-nr module, on the ns-3.41/contrib directory:
    git clone https://gitlab.com/cttc-lena/nr.git <local-path>/ns-3.41/contrib/nr
    cd <local-path>/ns-3.41/contrib/nr
    git checkout 5g-lena-v3.0.y

1.3.3 Install the TKN/ns3-gym module

1.3.3.1 OpenGym module pre-requisites
   # minimal requirements for C++:
   sudo apt install gcc g++ python3 python3-pip cmake
   # Install ZMQ, Protocol Buffers and pkg-config libs:
   
   sudo apt install libzmq5 libzmq3-dev
   apt-get install libprotobuf-dev
   apt-get install protobuf-compiler
   apt-get install pkg-config
1.3.3.2 Clone the ns3-gym module, on the ns-3.41/contrib directory:

OpenAI Gym is a toolkit for reinforcement learning (RL) and ns3-gym is a framework that integrates both OpenAI Gym and ns-3 to encourage the usage of RL in networking research.

   git clone https://github.com/tkn-tub/ns3-gym.git <local-path>/ns-3.41/contrib/opengym
   cd <local-path>/ns-3.41/contrib/opengym
   git checkout app-ns-3.36+
  • It is important to use the opengym as the name of the ns3-gym app directory.

1.4 Rebuild NS-3 with the additional modules

    cd <local-path>/ns-allinone-3.41/ns-3.41
    ./ns3 configure --enable-examples --enable-tests
    ./ns3 build

1.5 Install the ns3-gym module

  • Opengym Protocol Buffer messages (C++ and Python) are built during configuration.

1.5.1 Install the ns3-gym module

    cd <local-path>/ns-3.41/contrib/opengym
    pip3 install --user ./model/ns3gym

(Optional) Install all libraries required by your agent (like tensorflow, keras, etc.).

1.6 Install the A2C-LoVQI and DQN-LoVQI codes

Goes Get the code from the repository:

    cd <local-path>/ns-3.41/scratch
    git clone [email protected]:rogerio-silva/A2C-LoVQI.git

2. Run the code

Note that the Python code runs an agent and automatically starts the ns-3 simulation.

    cd <local-path>/ns-3.41/scratch/A2C-LoVQI
    python3 dqn_agent.py
    python3 a2c_agent.py

Enjoy it!

3. Cite this work

    @InProceedings{silvaRS2024, 
        author = {Silva, R. S. and Oliveira, R. R. and Carvalho, L. T. S. and Freitas, L. A. and Oliveira-Jr, A. C. and Cardoso, K. V. and Reis, C. B. and Xavier, P. S.},
        booktitle = {Anais do XLII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT)},
        title = {{Soluções baseadas em Aprendizado por reforço profundo para implantar VANTs como gateways LoRaWAN com foco na qualidade de serviço IOT}},
        month = {November},
        year = {2024},
        pages = {1--6},
        doi= {https://doi.org/10.14209/sbrt.2024.1571036460}
    }

About

Support repository for the article "Soluções baseadas em aprendizado por reforço profundo para implantar VANTs como gateways LoRaWAN com foco na Qualidade de Serviço IoT" submitted to SBrT2024.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published