Skip to content

Official Pytorch implementation for the paper "Single Stage Class Agnostic Common Object Detection"

License

Notifications You must be signed in to change notification settings

rsek147/Single-Stage-Common-Object-Detection

 
 

Repository files navigation

Single Stage Common Object Detection: A Simple Baseline

Official Pytorch implementation for the paper "Single Stage Class Agnostic Common Object Detection". This work is based on MMDetection 1.1.0.

Installation

conda env create -f environment.yml -n sscod
conda activate sscod

pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install -v -e .

Training and Testing

Scripts for training and testing models are put in folder scripts:

scripts
├── coco
│   ├── test
│   │   ├── exp2_caseA_baseline.sh
│   │   ├── exp2_caseB_baseline.sh
│   │   └── exp2_caseB_curcon.sh
│   └── train
│       ├── exp2_caseA_baseline.sh
│       ├── exp2_caseB_baseline.sh
│       └── exp2_caseB_curcon.sh
└── voc
    ├── test
    │   ├── exp2_arcconneg.sh
    │   ├── exp2_arccon.sh
    │   ├── exp2_baseline.sh
    │   ├── exp2_curcon.sh
    │   └── exp2_focalcur.sh
    └── train
        ├── exp2_arcconneg.sh
        ├── exp2_arccon.sh
        ├── exp2_baseline.sh
        ├── exp2_curcon.sh
        └── exp2_focalcur.sh

Checkpoints can be downloaded from https://www.dropbox.com/sh/j151jxfz44dzl2i/AACSTybiL5u9nC20x0aSzwR3a?dl=0.

Quantitative results

VOC dataset

COCO dataset

Qualitative results

image image image image image image image

About

Official Pytorch implementation for the paper "Single Stage Class Agnostic Common Object Detection"

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 91.0%
  • Cuda 5.5%
  • C++ 2.8%
  • Other 0.7%