Official Pytorch implementation for the paper "Single Stage Class Agnostic Common Object Detection". This work is based on MMDetection 1.1.0.
conda env create -f environment.yml -n sscod
conda activate sscod
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install -v -e .
Scripts for training and testing models are put in folder scripts
:
scripts
├── coco
│ ├── test
│ │ ├── exp2_caseA_baseline.sh
│ │ ├── exp2_caseB_baseline.sh
│ │ └── exp2_caseB_curcon.sh
│ └── train
│ ├── exp2_caseA_baseline.sh
│ ├── exp2_caseB_baseline.sh
│ └── exp2_caseB_curcon.sh
└── voc
├── test
│ ├── exp2_arcconneg.sh
│ ├── exp2_arccon.sh
│ ├── exp2_baseline.sh
│ ├── exp2_curcon.sh
│ └── exp2_focalcur.sh
└── train
├── exp2_arcconneg.sh
├── exp2_arccon.sh
├── exp2_baseline.sh
├── exp2_curcon.sh
└── exp2_focalcur.sh
Checkpoints can be downloaded from https://www.dropbox.com/sh/j151jxfz44dzl2i/AACSTybiL5u9nC20x0aSzwR3a?dl=0.