Skip to content

Commit

Permalink
Merge pull request #14 from rzk-lang/2.4-homotopies-are-equivalences
Browse files Browse the repository at this point in the history
Homotopies, equivalences, sets, and propositions
  • Loading branch information
fizruk authored Dec 13, 2023
2 parents 29d735f + ae58ad0 commit 463d91e
Show file tree
Hide file tree
Showing 10 changed files with 1,037 additions and 2 deletions.
4 changes: 3 additions & 1 deletion mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ nav:
- 2.1 Types are higher groupoids: 1-foundations/2-homotopy-type-theory/01-types-are-higher-groupoids.rzk.md
- 2.2 Functions are functors: 1-foundations/2-homotopy-type-theory/02-functions-are-functors.rzk.md
- 2.3 Type families are fibrations: 1-foundations/2-homotopy-type-theory/03-type-families-are-fibrations.rzk.md
- 2.4 Homotopies are equivalences: 1-foundations/2-homotopy-type-theory/04-homotopies-are-equivalences.rzk.md
- 2.4 Homotopies and equivalences: 1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md
- 2.5 The higher groupoid structure of type formers: 1-foundations/2-homotopy-type-theory/05-the-higher-groupoid-structure-of-type-formers.rzk.md
- 2.6 Cartesian product types: 1-foundations/2-homotopy-type-theory/06-cartesian-product-types.rzk.md
- 2.7 Σ-types: 1-foundations/2-homotopy-type-theory/07-sigma-types.rzk.md
Expand All @@ -35,6 +35,8 @@ nav:
- "2.14 Example: equality of structures": 1-foundations/2-homotopy-type-theory/14-example-equality-of-structures.rzk.md
- 2.15 Universal properties: 1-foundations/2-homotopy-type-theory/15-universal-properties.rzk.md
- Exercises: 1-foundations/2-homotopy-type-theory/exercises/README.md
- 3 Sets and Logic:
- 3.1 Sets and n-types: 1-foundations/3-sets-and-logic/01-sets-and-n-types.rzk.md

markdown_extensions:
- admonition
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -152,3 +152,34 @@ Alternativerly, groupoids can be viewed as a generalization of groups, where not
( \ x' z' q' w' r' → refl)
x y p) z q w r
```

## Related statements used in further proofs:

!!! note "Concatencation of three paths"

```rzk
#def 3-path-concat
( A : U)
( x y z w : A)
: ( x = y) → (y = z) → (z = w) → (x = w)
:= \ p q r → path-concat A x z w (path-concat A x y z p q) r
```

!!! note "Associativity symmetrical to 2.1.4-4"
$$(p \cdot q) \cdot r = p \cdot (q \cdot r)$$

```rzk
#def concat-assoc-2
( A : U)
( x y z w : A)
( p : x = y)
( q : y = z)
( r : z = w)
: path-concat A x z w (path-concat A x y z p q) r
= path-concat A x y w p (path-concat A y z w q r)
:= path-sym
( x = w)
( path-concat A x y w p (path-concat A y z w q r))
( path-concat A x z w (path-concat A x y z p q) r)
( concat-assoc A x y z w p q r)
```
Loading

0 comments on commit 463d91e

Please sign in to comment.