Skip to content

Commit

Permalink
Deploying to gh-pages from @ 2aceb9d 🚀
Browse files Browse the repository at this point in the history
  • Loading branch information
emilyriehl committed Oct 22, 2023
1 parent 087e8cc commit 2ccc25b
Show file tree
Hide file tree
Showing 4 changed files with 180 additions and 18 deletions.
52 changes: 35 additions & 17 deletions hott/10-trivial-fibrations.rzk/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -1289,26 +1289,44 @@ <h2 id="equivalence-between-domain-and-sum-of-fibers">Equivalence between domain
</span><span id="__span-13-13"><a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="err"> ( </span><span class="p">\ </span>a <span class="err">→ is-contr-based-paths B (f a)))</span>
</span><span id="__span-13-14"><a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="err"> ( fubini-Σ A B (</span><span class="p">\ </span>a b <span class="err">→ f a = b))</span>
</span></code></pre></div>
<p>The inverse of this equivalence is given (definitionally!) by the projection
<code>\ (_ , (a , _)) → a</code>.</p>
<div class="language-rzk highlight"><pre><span></span><code><span id="__span-14-1"><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="kr">#def</span><span class="p"> </span><span class="nf"><a href="#define:compute-left-inverse-equiv-domain-sum-of-fibers" id="define:compute-left-inverse-equiv-domain-sum-of-fibers" style="visibility: visible; position: relative; color: inherit">compute-left-inverse-equiv-domain-sum-of-fibers</a></span>
</span><span id="__span-14-2"><a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="err"> </span><span class="p">( </span>A B <span class="p">:</span><span class="err"> U)</span>
</span><span id="__span-14-3"><a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="err"> </span><span class="p">( </span>f <span class="p">:</span><span class="err"> A → B)</span>
</span><span id="__span-14-4"><a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="err"> ( (b , (a , p)) : </span><span class="p">(</span>Σ (b <span class="p">:</span><span class="err"> B) , fib A B f b))</span>
</span><span id="__span-14-5"><a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="err"> : ( </span><span class="s">first</span><span class="err"> (</span><span class="s">first</span><span class="err"> ( </span><span class="s">second</span><span class="err"> (equiv-domain-sum-of-fibers A B f))) (b , (a , p))</span>
</span><span id="__span-14-6"><a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="err"> = a)</span>
</span><span id="__span-14-7"><a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="err"> := </span><span class="s">refl</span>
</span><span id="__span-14-8"><a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a>
</span><span id="__span-14-9"><a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="kr">#def</span><span class="p"> </span><span class="nf"><a href="#define:compute-right-inverse-equiv-domain-sum-of-fibers" id="define:compute-right-inverse-equiv-domain-sum-of-fibers" style="visibility: visible; position: relative; color: inherit">compute-right-inverse-equiv-domain-sum-of-fibers</a></span>
</span><span id="__span-14-10"><a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="err"> </span><span class="p">( </span>A B <span class="p">:</span><span class="err"> U)</span>
</span><span id="__span-14-11"><a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="err"> </span><span class="p">( </span>f <span class="p">:</span><span class="err"> A → B)</span>
</span><span id="__span-14-12"><a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="err"> ( (b , (a , p)) : </span><span class="p">(</span>Σ (b <span class="p">:</span><span class="err"> B) , fib A B f b))</span>
</span><span id="__span-14-13"><a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="err"> : ( </span><span class="s">first</span><span class="err"> (</span><span class="s">second</span><span class="err"> ( </span><span class="s">second</span><span class="err"> (equiv-domain-sum-of-fibers A B f))) (b , (a , p))</span>
</span><span id="__span-14-14"><a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="err"> = a)</span>
</span><span id="__span-14-15"><a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="err"> := </span><span class="s">refl</span>
</span></code></pre></div>
<h2 id="equivalence-between-fibers-in-equivalent-domains">Equivalence between fibers in equivalent domains<a class="headerlink" href="#equivalence-between-fibers-in-equivalent-domains" title="Permanent link">&para;</a></h2>
<p>As an application of the main theorem, we show that precomposing with an
equivalence preserves fibers up to equivalence.</p>
<div class="language-rzk highlight"><pre><span></span><code><span id="__span-14-1"><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="kr">#def</span><span class="p"> </span><span class="nf"><a href="#define:equiv-fibers-equiv-domains" id="define:equiv-fibers-equiv-domains" style="visibility: visible; position: relative; color: inherit">equiv-fibers-equiv-domains</a></span>
</span><span id="__span-14-2"><a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="err"> </span><span class="p">( </span>A B C <span class="p">:</span><span class="err"> U)</span>
</span><span id="__span-14-3"><a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="err"> </span><span class="p">( </span>f <span class="p">:</span><span class="err"> A → B)</span>
</span><span id="__span-14-4"><a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="err"> </span><span class="p">( </span>g <span class="p">:</span><span class="err"> B → C)</span>
</span><span id="__span-14-5"><a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="err"> </span><span class="p">( </span>is-equiv-f <span class="p">:</span><span class="err"> is-equiv A B f)</span>
</span><span id="__span-14-6"><a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="err"> </span><span class="p">( </span>c <span class="p">:</span><span class="err"> C)</span>
</span><span id="__span-14-7"><a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="err"> : Equiv (fib A C (comp A B C g f) c) (fib B C g c)</span>
</span><span id="__span-14-8"><a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="err"> :=</span>
</span><span id="__span-14-9"><a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="err"> equiv-comp</span>
</span><span id="__span-14-10"><a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="err"> ( fib A C ( comp A B C g f) c)</span>
</span><span id="__span-14-11"><a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="err"> ( </span><span class="kt">Σ</span><span class="err"> ((b, _) : fib B C g c), fib A B f b)</span>
</span><span id="__span-14-12"><a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="err"> ( fib B C g c)</span>
</span><span id="__span-14-13"><a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="err"> ( equiv-fiber-sum-fiber-comp A B C f g c)</span>
</span><span id="__span-14-14"><a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="err"> ( ( projection-total-type (fib B C g c) (\ (b, _) → fib A B f b))</span>
</span><span id="__span-14-15"><a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="err"> , </span><span class="s">second</span>
</span><span id="__span-14-16"><a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a><span class="err"> ( projection-theorem (fib B C g c) (\ (b, _) → fib A B f b))</span>
</span><span id="__span-14-17"><a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a><span class="err"> ( \ (b, _) → (is-contr-map-is-equiv A B f is-equiv-f) b))</span>
<div class="language-rzk highlight"><pre><span></span><code><span id="__span-15-1"><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="kr">#def</span><span class="p"> </span><span class="nf"><a href="#define:equiv-fibers-equiv-domains" id="define:equiv-fibers-equiv-domains" style="visibility: visible; position: relative; color: inherit">equiv-fibers-equiv-domains</a></span>
</span><span id="__span-15-2"><a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="err"> </span><span class="p">( </span>A B C <span class="p">:</span><span class="err"> U)</span>
</span><span id="__span-15-3"><a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="err"> </span><span class="p">( </span>f <span class="p">:</span><span class="err"> A → B)</span>
</span><span id="__span-15-4"><a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="err"> </span><span class="p">( </span>g <span class="p">:</span><span class="err"> B → C)</span>
</span><span id="__span-15-5"><a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="err"> </span><span class="p">( </span>is-equiv-f <span class="p">:</span><span class="err"> is-equiv A B f)</span>
</span><span id="__span-15-6"><a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="err"> </span><span class="p">( </span>c <span class="p">:</span><span class="err"> C)</span>
</span><span id="__span-15-7"><a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="err"> : Equiv (fib A C (comp A B C g f) c) (fib B C g c)</span>
</span><span id="__span-15-8"><a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="err"> :=</span>
</span><span id="__span-15-9"><a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="err"> equiv-comp</span>
</span><span id="__span-15-10"><a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="err"> ( fib A C ( comp A B C g f) c)</span>
</span><span id="__span-15-11"><a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="err"> ( </span><span class="kt">Σ</span><span class="err"> ((b, _) : fib B C g c), fib A B f b)</span>
</span><span id="__span-15-12"><a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="err"> ( fib B C g c)</span>
</span><span id="__span-15-13"><a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="err"> ( equiv-fiber-sum-fiber-comp A B C f g c)</span>
</span><span id="__span-15-14"><a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="err"> ( ( projection-total-type (fib B C g c) (\ (b, _) → fib A B f b))</span>
</span><span id="__span-15-15"><a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="err"> , </span><span class="s">second</span>
</span><span id="__span-15-16"><a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="err"> ( projection-theorem (fib B C g c) (\ (b, _) → fib A B f b))</span>
</span><span id="__span-15-17"><a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="err"> ( \ (b, _) → (is-contr-map-is-equiv A B f is-equiv-f) b))</span>
</span></code></pre></div>


Expand Down
Loading

0 comments on commit 2ccc25b

Please sign in to comment.